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Preface

The 11th International Workshop on Bifurcation and Degradation in Geomaterials
(IWBDG 2017) was held in Limassol, Cyprus, during the period May 21–May 25,
2017. Interests on localization and instabilities in the field of geomechanics date
back to the early 1980s when the first International Workshop on Localization of
Soils was organized in Karlsruhe, Germany, in February 1988. The first event
created such enthusiasm and interest in the fundamental aspects of bifurcation
theory to soils, that a second workshop followed suit in Gdansk, Poland, in
September 1989. The topic later extended to rock mechanics at the third interna-
tional workshop in Aussois, France, in September 1993. The interest grew steadily,
and the scope was expanded to instabilities and degradations in geomaterials at the
workshops that were held in Gifu, Japan, September 1997; Perth, Australia,
November 1999; Minneapolis, USA, June 2002; Crete, Greece, June 2005; Lake
Louise, Canada, May 2008; Porquerolles Island, France, May 2011; and Hong
Kong, May 2014.

The IWBDGs have grown in size and scope, since their inception, covering more
and wider areas of geomaterials and geomechanics including modern trends. The
scientific program of the IWBDG 2017 includes 11 keynote lectures and 66 oral
communications. The lectures cover a wide range of topics including advances in
instabilities, localized and diffuse failure, multiscale phenomena, multiphysics,
micromechanical modeling, and other related topics. A major goal was to promote
the link between theoretical and applied mechanics with engineering applications in
traditional and in emerging fields, such as geomechanics for the energy and the
environment. The quality of the contributed papers has benefited greatly from the
expertise of numerous colleagues who served as referees and to whom we are very
grateful.

The IWBDG 2017 is dedicated to Prof. Hans Muhlhaus, on the occasion of his
70th birthday, in recognition of his contributions and his achievements in the field
of Bifurcation and Degradation in Geomaterials. The papers presented in special
session in honor of Prof. Muhlhaus are included in these proceedings.

Hans shaped the world of Geomechanics, introducing the theory of bifurcations,
localisations and instabilities and higher order theories. He brought and drummed in
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the mathematical rigor and ‘objectivity’ into the engineering community. His paper
“The thickness of shear bands in granular media”, Geotechnique, 1987, co-authored
by the late Prof. Ioannis Vardoulakis, is the second-most cited paper since 1970 of
this journal. It has a significant impact on the development of constitutive theories
for granular materials. Such theories are crucial for a fundamental understanding
of the origins of failure of geo-structures-natural or man-made-and the dynamic
properties of earthquakes. More recent contributions to the field include his papers
on shear banding, discrete element simulations of granular assemblies and his
theoretical and computational work on instabilities in sand erosion and fluid-solid
interactions. With more than 300 journal and conference papers and more than 8000
citations Professor Mühlhaus is a leading researcher in the area who determined its
shape and direction for years to come.

We thank all the authors and especially the authors of the plenary and invited
papers for their timely submission and participation in IWBDG 2017, the Session
Developers for putting together exciting and stimulating sessions, the reviewers
of the papers, and the members of the Scientific and Organizing Committees for their
support. We also express our sincere appreciation to the technical and financial
cosponsors: the University of Cyprus, the Aristotle University of Thessaloniki, the
University of Western Australia, the Cyprus Tourism Organization, ALERT-
Geomaterials, SINTEF Petroleum Research, MTS Systems, Themeliotechniki
Cyprus LTD. and Dreamscape Conferences.

Thessaloniki, Greece Euripides Papamichos
Nicosia, Cyprus Panos Papanastasiou
Crawley, Australia Elena Pasternak
Crawley, Australia Arcady Dyskin
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Localisation Precursors in Geomaterials?

J. Desrues, E. Andò, P. Bésuelle, G. Viggiani, L. Debove,
P. Charrier and J.B. Toni

Abstract Strain localisation in soils and rocks has been studied extensively for the

last 40 years or so. On the experimental side, a large number of these studies have

been devoted to the experimental observation of localised deformation in labora-

tory element tests like biaxial (plane strain) and triaxial tests. 2D and 3D imaging

techniques and image analysis methods have been used to characterize the onset and

subsequent development of strain localisation. In the recent years, these techniques

and methods have improved dramatically, allowing considerably more accurate mea-

surement of displacement and strain field in the laboratory specimens. It is time to

have a second look, with these new glasses, at some decades-old results, to assess

what can be confirmed and what should be reconsidered.

1 Introduction

Strain localisation in soils and rocks has been studied extensively in Laboratoire 3SR,

Grenoble, for the last 40 years or so [4, 6, 7]. It was shown, using strain field measure-

ment methods e.g. stereophotogrammetry, that shear banding can take place in both

contractive and dilative specimens, under either drained or undrained conditions.

Complex localisation patterns have been revealed in axisymmetric triaxial tests using

medical X-ray scanners to perform tomographic studies allowing for the first time

to have a look inside the specimens rather than simply at their outer surface [1, 5].

These studies, using imaging techniques that were new at that time, already opened

new windows on the early mechanisms of strain localisation in laboratory specimens:

it became clear that the initiation of strain localisation in specimens undergoing a

loading process was not properly characterised by the naked eye observation of the

specimen during the test, which let see only final gross patterns that can be rather

different from the early ones.
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Fig. 1 Incremental deviatoric strain field in biaxial test SHF06 on dense Hostun RF sand: well

structured shear bands are observed at the very end of the pre-peak regime. After Desrues [4]

Biaxial tests on sand performed using setups that allowed a direct observation

and photography of the front face of parallelepipedic specimens subjected to a plane

strain deformation processes [4, 6, 7] indicated that strain localisation starts to

develop at or before the stress peak of the global response. Incremental deviatoric

strain fields, characterised at the best resolution that was available by that time (i.e.

up to the years 2000) were revealing a typical change from strain field distribution

from what appeared as a more or less homogeneous, or diffuse heterogeneous mode,

to a shear band mode, as illustrated in Fig. 1. Triaxial tests on the same sand, per-

formed under tomographic survey using a medical X-ray scanner, revealed for the

first time complex shear band patterns, observable as dilatancy bands but only after

the stress peak (Fig. 2). Identical observations were reported by other teams in the

world [1, 10].

In recent years, imaging techniques and image analysis methods have improved

dramatically, allowing considerably more accurate measurement of displacement

and strain field in the laboratory specimens. High resolution computed tomogra-

phy (CT), associated with 3D volume digital image correlation (DIC), are the new

glasses that have changed our observation capabilities. Nowaday, performing in-situ

(i.e. inside a tomograph) triaxial tests on 70 mm specimens of Hostun sand with a

voxel size as small as 50 µm is possible. With such a resolution, one single grain

among the 14 millions contained in the 538 cm3
volume of the specimen contains

on average 63 = 216 voxels. This is not enough to perform a exhaustive survey of the

kinematics of the individual grains, as made successfully on 10 mm diameter triaxial

specimens of the same sand using our CT scanner (discrete analysis, Andò et al. [2]);

but it is enough to perform high resolution DIC in terms of continuum kinematics,

allowing for a completely new insight of the pre-peak deformation of granular media

in axisymmetric triaxial tests, as will be shown in this paper.

This study was motivated by intriguing observations made recently on several

experimental setups developed in our lab, using high resolution imaging techniques

on different granular materials, soils and rocks. Andò et al. [2] show pre-peak defor-

mation patterns in small triaxial specimens analysed using discrete DIC (Fig. 3).

Bésuelle and Lanatà [3] report the same kind of observations in plane strain
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Fig. 2 Complex shear band patterns in triaxial tests on dense Hostun RF sand: observed shear

bands in the post-peak regime. After Desrues et al. [5]

Fig. 3 Incremental deviatoric strain fields in small-size triaxial tests on caicos ooids observed

using micro-tomography and discrete DIC. After Andò et al. [2]

compression tests on rocks, using DIC to analyse 2D high resolution digital images

of a side of the specimen, taken during the test through a transparent window (Fig. 4).

Hall et al. [8] report results suggesting the presence of early localised events in the

1𝛾2𝜖 apparatus in 3SR lab, Grenoble (Fig. 5). Lebouil et al. in Institut de Physique

de Rennes, France find also some early localised deformation bands in glass beads,

using a different testing setup and imaging technique based on laser light diffusion

within the first millimeter of the specimen [9].

The present study is performed on standard scale laboratory specimens, subjected

to classical axisymmetric triaxial tests with various test conditions in terms of initial

void ratio, end lubrication, slenderness ratio. The results can be compared directly
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Fig. 4 Plane-strain compression test at 20 MPa confining pressure: incremental fields, between

photographs numbered on top of each picture, of the second invariant of the incremental strain

tensor. After Bésuelle and Lanatà [3]

Fig. 5 Incremental deviatoric strain fields in biaxial tests on 2D granular media (Scheenebeli mate-

rial). After Hall et al. [8]

with our 25 years old tomographic results published in 1996 [5]. The goal is to check

whether early localisation events can be detected in classical test conditions, and if

yes to try to characterise in detail these events.

2 Materials and Methods

Hostun NH31 sand produced by SIBELCO-France is used in this study. HN31 is the

present denomination of Hostun RF sand that was used in the past in our lab. The

characteristics of the two sands are the same.

The micro-tomograph used in the study was designed and build by RX-Solution,

Annecy, France.

The DIC code Tomowarp2 used is an in-house code developed by Tudisco et al.

[11].

The triaxial setup was designed specifically for this study. The pressure cell is

made of PVC, it can sustain up to 600 kPa (limited pressure in order to avoid too

thick cell walls, which would absorb to much of the X-ray flux). The loading frame

allows platen displacement speed in the range 1–25 µm per second. The nominal

specimen diameter and length are respectively 70 mm and 140 mm (or 70 mm for

short specimens).
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Fig. 6 “Tomotriax 𝛷70” setup in the X-ray scanner at 3SR

Figure 6 shows the triaxial setup ready for operation inside the CT scan. From left

to right one can see the X-ray source, the rotation table with the triaxial cell fixed

on it, and the detector. The cell is placed close to the detector because the field to be

imaged is large (specimen in its possible laterally expanded configuration).

3 Results and Analysis

Although the test campaign is still running, and despite the very time-consuming data

processing steps (tomographic image acquisition and reconstruction, digital image

correlation, strain field computation, resulting 3D images exploration et rendering)

to perform on 3D images as big as 20 Gbytes each, the picture that emerges already

is the following: early localisation events are present almost from the beginning of

the loading in all the tests, including those performed on loose specimens. These

events are numerous, and for each of them the geometrical extension (length of the

band) is significant with respect to the size of the specimen: typically from one third

to one half of the specimen’s length, often more. Some of these events tend to grow

in intensity as the global specimen’s deformation progresses, some tend to decay. At

20% global axial strain, a few shear bands can be identified clearly, concentrating all

the deformation process, and visible on the specimen’s surface with the naked eye.

Still, the direct observation at the stress peak (about 6–8% axial strain) did not reveal

any visible localisation.

Illustrating these results as 2D images is challenging, because the very subtle and

numerous early localised events become confused when projected onto a plane to
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produce a 2D picture; 3D dynamic rendering is necessary to separate the events,

and to understand their spatial organisation. However, a few pictures are proposed

in this paper to support the above statements. They illustrate the test TT70-HN31-

001 performed on a dense specimen, slenderness ratio 2, non-lubricated ends, tested

under 100 kPa confining pressure.

Figure 7 shows the sequence of incremental deviatoric strain fields presented

as 3D volumes with transparency in order to reveal the inner organisation of the

Fig. 7 Incremental deviatoric strain fields in axisymetric triaxial test on Hostun HN31 sand

observed using micro-tomography and continuum DIC
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deformation events. Each image corresponds to a 2% increment of global axial strain.

As indicated by the lookup table, dark blue is for zero and intense red or 10% devia-

toric strain. Although difficult to observe clearly on such 2D projections, early events

can be detected already in the first increment.

In other tests, not presented in this paper, it was observed that such pre-peak struc-

turation of the deformation process occurs in all tests performed so far, including

dense and loose specimens, long and short, end-lubricated or not.

In the authors’ belief, the observed localised events cannot be considered as sim-

ple local slips between grain clusters: their typical length is two decades above the

mean grain size of the tested sand.

4 Conclusions

Diffusely distributed strain localisation events have been observed from the early

stages of triaxial tests on sand, using X-ray micro tomography and Digital Image

Correlation. These finding seems to be rather general: dense and loose specimens,

long and short, end-lubricated or not. These events have all the characteristics of

shear bands. Should them be considered as precursors of strain localisation, or as

already achieved localised events? The theoretical interpretation of these findings

presents a number of interesting questions to be studied in future work.
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Water Saturation Induced Strength
Degradation of Callovo-Oxfordian
Claystone

Zaobao Liu, Jianfu Shao and Ying Xu

Abstract It is necessary to investigate the effect of initial water content on the
strength behaviors of the Callovo-Oxfordian (COx) argillite since the construction
activities of underground radioactive waste repositories can induce a desaturation
and a resaturation process of the hosted rock. The present work is devoted to an
experimental characterization of the water induced strength degradation the COx
argillite under constant strain rate loadings. Argillite samples of initial relative
humidity (RH) of 98% are firstly tested at confining pressure of 4 MPa, 8 MPa and
12.4 MPa to derive a strength criterion. Then another group of tests on argillite
samples with different saturation realized by relative humidity (dry, 76 and 85%) are
carried out to quantify the water content induced strength degradation in claystone.
It is found that both the peak and residual stress and the failure strain are correlated
with the humidity level of the claystone. The results give the implications that the
desaturation and re-saturation of argillite will exert influences on its surroundings in
the underground repositories. Special attention should be paid to minimize the
swelling effect of clay minerals and oxidation of pyrite inclusions in the argillite
with water presence.

Keywords Argillite ⋅ Damage ⋅ Failure ⋅ Water degradation ⋅ Radioactive
waste disposal

1 Introduction

Geological disposal is considered feasible worldwide for disposal of high-level
radioactive waste. Claystone, due to their low permeability, self-sealing ability and
the absence of major natural fractures, have been selected as the hosted rock for

Z. Liu (✉) ⋅ J. Shao ⋅ Y. Xu
Laboratory of Mechanics of Lille, University of Lille, 59655 Villeneuve D’Ascq, France
e-mail: zaobao.liu@polytech-lille.fr

Y. Xu
School of Mines, China University of Mining and Technology, Xuzhou 221116, China

© Springer International Publishing AG 2017
E. Papamichos et al. (eds.), Bifurcation and Degradation of Geomaterials
with Engineering Applications, Springer Series in Geomechanics
and Geoengineering, DOI 10.1007/978-3-319-56397-8_2

11



www.manaraa.com

underground radioactive waste repositories in France. In this context, the
Callovo-Oxfordian (COx) argillite, has been extensively studied during the last
decades in France in the framework of the underground research laboratory CIGEO
[1] to characterize its thermo-hydro-mechanical behaviors.

In the construction of underground nuclear wastes repositories, the initially
saturated claystone will be subjected to various couplings such as excavation
induced loadings, water and gas flow, desaturation and resaturation processes after
sealing. Due to the presence of clay minerals especially the smectite, the mechanical
behavior of the claystone is very sensitive to its water content [2, 3]. Thus, it is
necessary to investigate the effect of RH level on the mechanical behaviors of the
COx clayey rock. Experimental investigations have been reported on the
mechanical and hydro mechanical behaviors of the claystone in partially saturated
conditions [2–6]. It is found that the strength decreases and the clayey rock
becomes more ductile when RH level increases. The initial elastic modulus also
decreases with water content while Poisson’s ratio is slightly affected by water
content. These effects are thought inherently related to the change of microstructure
in the clayey rock [7]. It is thought the desaturation and resaturation process of the
clayey rock may modify the distance between the clay platelets, leading to modi-
fication of the mechanical properties of clay aggregates and thus the clayey rock [8].
Moreover, damage is found more important in claystone with lower moisture values
than higher ones. The shear bands and shearing factures created during triaxial
compression are related to moisture levels of the claystone [9].

This study quantifies strength degradation of the COx claystone induced by
increasing saturation degree. Triaxial compression tests of three confining pressures
are firstly carried out to obtain a strength criterion. The pre-peak and post-peak
strength of the COx claystone of different saturation is investigated.

2 Materials, Experimental Device and Method

The tested material is cored from the underground research laboratory in
Meuse/Haute-Marne of France in the Callovo-Oxfordian argillite formation. The
clayey rock in microscale is constituted of three major minerals, i.e. quartz, calcite
and clay minerals [10, 11]. The pores of the argillite are mainly in nanoscale [1, 12].

The rock cores of argillite, although well packaged are sometimes fractured in
process of transportation and conservation due to unexpected damage as well as the
oxidation induced cracking of highly active inclusions. We have encountered many
fractures in the original argillite rock cores although they are protected firstly by a
plastic jacket, then by a concrete confinement, and eventually by a rigid plastic
package with constrains at both ends.

Preparation of argillite samples with relative large diameter is difficult since the
argillite is easily damaged and fractured in process of cutting and drilling in lab-
oratory. Argillite samples with large diameters are more likely to be influenced by
the inclusions. We have to use air as coolant since the argillite is prone to splinter

12 Z. Liu et al.
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when contacted with water without confining pressure. Thus, the drilling of samples
will produce around the drilling rig a lot of dusty particles which are very fine and
harmful to the health of people. And the drilling will sometimes induce specimen
cracking if there are certain pre-existing cracks or weak zone in the rock cores.
Sometimes the cracks can go through the specimens, which make the samples
useless. Moreover, once some expected samples are drilled from a sound rock core
without fractures, they are then subjected to the tests of realizing varying water
contents by placement and conservation in a small container where the RH is
maintained by different brines. Due to the low permeability of argillite, the desat-
uration and resaturation processes in the container will take a very long time
depending on the sample size. At the sample time, the desaturation or resaturation
generates a gradient of water content inside the sample. Due to this gradient, there is
kinematic incompatibility of swelling or shrinkage strain leading to creation of local
tensile stresses. Such tensile stresses may become significant in large samples and
then responsible for micro cracks. Thus, many samples are cracked due to swelling
of the clay minerals as well as oxidation of organic inclusions in the container with
high RH levels. Therefore, special attention should be paid to the swelling of clay
minerals and oxidation of active inclusions in the claystone. In the present study,
the samples are protected by a scotch tape at both ends and finally they are in a
good manner for usage in tests.

The samples used in this study are drilled from the same rock core with a
diameter about 37 mm and a length about 74 mm. Both sample ends are polished to
be perpendicular to the sample axis once they are drilled and cut to agree with the
expected size. Then, all samples are conserved in a closed container in which the
RH is maintained at a given level, say 76, 85 and 98%. The temperature around the
container is kept 23 °C by a central air conditioner. The samples are kept in
humidity controlled containers and will not be used for mechanical tests until their
mass values stabilize. The dry sample is heated before test progressively in an oven
at 50 °C (2 days), 80 °C (2 days) and 105 °C (3 days) to minimize the
preheating-induced cracks. The RH is taken as 0% for the dry sample, which
assumes that no water is retained after successive heating.

The experimental program is devoted to characterize the damage and failure
behaviors of the argillite under constant strain rate loading conditions. All the tests
are realized in an autonomous and auto-compensated hydro-mechanical testing
system patented to the University of Sciences and Technologies. The testing system
consists of three independent loading components, respectively for deviator stress
loading, confining pressure application, and interstitial pressure generation, which
are assembled independently in the triaxial cell. The monitoring and acquisition of
pressure/stresses, fluid pressure and/or flow rate, displacements or strain is realized
by some specific transducers and recorded by a data acquisition center.

The confining pressure is applied and maintained by an ISCO D260 series pump
which has a precision of 0.1 MPa, and the interstitial pressure is maintained by a
gas supplier controlled by a manometer which has a precision of 0.1 MPa. When
applying confining pressure in the apparatus, the samples are subjected to a
hydrostatic stress state. The deviator is loaded by a rigid INSTRON mechanical

Water Saturation Induced Strength Degradation … 13
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loading machine. The loading and unloading of the deviatoric stress are controlled
by a constant axial strain rate of ε ̇1 = 0.5 × 10− 5 ̸s. A pair of LVDT and a radius
ring measure the deformation. The axial strain ε1 is thus obtained by the ratio
between the LVDT displacement and the sample length, and the radius strain ε3 is
obtained by the ratio between the ring deformation and the sample diameter.
Volumetric strain εv of the samples in the mechanical tests are calculated by

εv = ε1 + 2ε3 ð1Þ

The deviatoric stress q in the sample is calculated by

q= σ1 − σ3 = ðF −Ff Þ ̸A ð2Þ

where, F is the applied force; Ff is the piston friction about 0.6 KN in the tests.

3 Mechanical Curves

The strain and deviatoric stress throughout the constant strain rate loading are
shown in Fig. 1a–c for the COx clayey rock samples of the RH = 98% under three
confining pressures and shown in Fig. 1d–f for the samples of three different RH
values under Pc = 12 MPa.

The peak strength values of the samples are related to the RH values of the
samples and will be discussed later. The axial strain at macro failure of the sample
of dried, with RH = 76%, 85% and 98% are respectively 1.19%, 2.22%, 2.23% and
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2.51%. It suggests that the strains at failures of the samples are also influenced by
the RH. Samples with bigger values of RH seem to be able to bear larger defor-
mation than the ones with lower relative humidity. Thus, high RH level can
enhance the strains of the argillite samples.

Moreover, evolution of volumetric strain of the samples is influenced by its
initial RH as indicated in Fig. 1, especially the onset of dilation, i.e. the turning
point at which the volume strain turns from compaction to dilation in the
strain-stress curves. The volumetric strain stops compacting (onset of dilation) at
the deviator of q = 68.4 MPa for the dry sample (RH = 0), and respectively about
q = 42.8 MPa, 26.1 MPa and 13.5 MPa for samples with RH = 76, 85 and 98% as
shown in Fig. 1. Hence, the stress onset of dilation of the argillite is closely related
to its RH values. The COx claystone with higher RH values arrives at its dilation
onset at a much smaller stress than those with lower ones.

4 Strength Degradation

The detail strength properties of the claystone are shown in Fig. 2. As shown in
Fig. 2a, the relation between the strength and mean stress can be well quantified by
a linear function, which indicates a linear strength criterion is suitable to describe
the strength behavior of the claystone of RH = 98%.

According to the evaluation results in Fig. 2a, one can calculate the cohesion
c = 7.24 MPa and the friction angle φ = 20.3°, for the COx claystone at initial
saturation degree of RH = 98%.
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For the degradation in mechanical strength induced by the RH, we define

y =
qðdryÞ− qðRHÞ

qðdryÞ , x = RH − 0%ðdryÞ=RH ð3Þ

One can have a linear relationship that can describe the strength degradation
properties of the claystone induced by increasing initial saturation degree at
Pc = 12 MPa

y = mx ð4Þ

The degradation coefficient m is respectively 0.5043 and 0.5356 for the peak and
residual strength as indicated in Fig. 2b. The linear degradation is probably induced
by the weakening mechanism that the layers of the illite and smectite are easier to
collapse and fall down with more water content.

5 Conclusion

Initial saturation degree has important effects on strength and deformation of the
COx claystone. High initial saturation weakens argillite mechanical strength but
enhances its deformation. The onset of volume dilation advances in the COx
claystone with higher saturation during triaxial loading. Linear functions can
quantify the claystone saturation induced strength degradation. The degradation
may be induced by water weakening of interlayered structures of illite and smectite.
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Propagation and Evolution of Strain
Localization in Clay

Dunja Perić and Xingdong Wu

Abstract This research focuses on propagation and evolution of strain localization
in clay. To this end, an undrained plane strain compression test program was
performed to investigate the effects of the past stress history and strain rates on the
strain localization response of kaolin clay. Results of a single test (T3) are presented
herein. They include the overall global stress/pore pressure versus axial strain
response, as well as indicators of propagation and evolution of strain localization.
The results indicate that the response consisted of the three distinct phases: (1) a
homogenous deformation, (2) an inception and propagation of strain localization,
and (3) an evolution of strain localization within the shear band. The Lagrange
strain tensor was used to obtain local volumetric and shear strains developed within
the shear band during the evolution stage. It was found that local volumetric and
shear strains reached 80% and 200% respectively, which corresponds to a global
axial strain increment of only 1.7%. Furthermore, the shear band exhibited a
decreasing tendency to compress, thus resulting in its incremental dilatancy angle
varying from initially −24° to a final value of −6°.

1 Introduction

Strain localization in granular materials such as sands has been extensively
investigated in the past 30 years, both physically and mathematically, thus resulting
in significant advances in the related knowledge. This study was undertaken to
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further elucidate propagation and evolution of strain localization in undrained plane
strain tests on slurry consolidated kaolin clay.

2 Experimental Program

An experimental program was designed and performed to investigate effects of a
stress history and loading rate on development of strain localization in clay samples.
To this end lightly and slightly heavily overconsolidated samples were tested in
compression at two tenfold different axial strain rates Perić and Hwang [1]. Pris-
matic clay specimens were trimmed from slurry consolidated samples. They were
subsequently mounted on the bottom platen inside a biaxial cell. The bottom platen
was placed on the top of a linear bearing or sled, thus enabling an uninhibited
development of strain localization. All clay samples were subjected to a mixed
control undrained loading whereby the axial and horizontal out of plane strain rates
were controlled along with the rate of the horizontal in plane total stress.

The plane strain apparatus was heavily internally instrumented to facilitate close
monitoring of ensuing failure mechanisms. The internal instrumentation included
seven LVDTs and eight load cells. External instrumentation included three pore
pressure transducers for measurements of top and bottom pore pressures, and of a
volume change of a specimen during the consolidation phase.

3 Results

Although a total of six undrained plane strain compression experiments were car-
ried out only one of them (T3) is discussed herein. The corresponding sample was
consolidated to a mean effective stress of 55.2 kPa in the initial stage of a biaxial
test. This state corresponds to the overconsolidation ratio of 2.91 based on the past
maximum mean effective stress applied during the slurry consolidation. An overall
response of the clay sample observed in test T3 is depicted in Figs. 1 through 2,
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which show plots of the deviatoric stress and average excess pore pressure versus
global axial strain. The average excess pore pressure is the average value of the top
and bottom measurements. All stresses were obtained from the boundary mea-
surements of forces and a chamber pressure. Furthermore, it is noted that in test T3
the global axial strain rate was about tenfold decreased (from 3.3 %/hr to 0.33%/hr)
at about value of global axial strain of 0.75%.

Measurements obtained from internal LVDTs indicated that the response of the
sample was homogenous prior to the onset of strain localization, thus indicating that
a global or sample level response nearly coincides with a pointwise or local
response. This phase was followed by the first cluster of closely spaced events,
which commences with the onset of strain localization. It also contains the maximum
values of deviatoric stress, average pore pressure, and stress ratio (deviatoric to mean
effective stress), as well as the end of a shear band propagation (Figs. 1 and 2). Thus,
the maximum values of deviatoric stress, average pore pressure and stress ratio
occurred during the propagation of the shear band. The second cluster of closely
spaced events emerged during the further evolution of the shear band. It contains the
minimum values of the average excess pore pressure, deviatoric stress and stress
ratio (Figs. 1 and 2). It is noted that the deviatoric stress herein is a generalized
deviatoric stress, thus including effects of all three principal stresses.

Evolution of local strains is presented next. A shear band is assumed to be
inextensible during the evolution phase simply because a change in length due to an
elastic unloading is negligible in comparison to the length of the shear band. It is
also assumed that the entire shear band deforms uniformly, thus undergoing the
displacement pattern shown in Fig. 3, which depicts only a small portion of the
total length of the shear band. Furthermore, the orientation was obtained from the
photographs and assumed to be constant after the end of propagation when com-
puting local strains.

In the present computation elastic unloading outside the shear band is neglected.
Thus, horizontal and vertical displacements of the upper boundary of the shear band
are equal to the displacements of the sled and of the top sample surface respectively.
The Lagrange strain is used to compute local volumetric and shear strains based on
the displacements of the top boundary of the shear band.
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Consequently, shear (εs) and volumetric strains (εv) of the shear band respec-
tively are given by:

εs tð Þ= uT tð Þ
tE

cosψ tð Þ ð1Þ

and

εv tð Þ= −
uT tð Þ
tE

sinψ tð Þ ð2Þ

where t is time, uT is a magnitude of a top shear band boundary displacement, while
tE is the thickness of the shear band that corresponds to the end of the propagation
stage. In this particular test tE was rather small and equal to 0.33 mm. Finally, a
total dilatancy angle (ψ) is given by:

ψ tð Þ= θB − tan− 1 uTz tð Þ
uTy tð Þ

� �
ð3Þ

where uTz and uTy are vertical and horizontal displacements of the top shear band
boundary respectively, while θB is the angle between the shear band and horizontal
direction. It is noted that this definition results in negative dilatancy angle for a
contracting shear band.

Figure 4 shows local volumetric and shear strains computed in accordance with
Eqs. (1) and (2).

Figure 5 depicts total and incremental dilatancy angles computed in accordance
with Eq. (3).

Fig. 3 Un-deformed and
deformed configurations of
the shear band at different
values of global axial strain
for test T3
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4 Conclusions

Results of an undrained plane strain compression test on clay sample having an
overconsolidation ratio of 2.91 are presented. They indicate that three distinct
phases of response exist: (1) a homogeneous deformation, (2) onset of strain
localization, which is followed by shear band propagation, and (3) shear band
evolution. Furthermore, strains are highly localized during the third stage, thus
resulting in values of local volumetric and shear strains of 80% and 200%
respectively, which correspond to the global axial strain of 5%. Furthermore, a
dilatancy angle of the shear band increases from −24° to −6° during the evolution
stage, thus indicating a decreasingly contractant shear band.
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Emergence of Strain Localization in Porous
Rocks Characterized by Full-Field
Measurement in Plane Strain Condition

Pierre Bésuelle and Patrizia Lanatà

Abstract The development of a new true triaxial cell which contains a device to

observe the specimen under loading for full field measurement, has allowed study-

ing the emergence of strain localisation in rock specimens. Two porous rocks have

been investigated, a sandstone and a clayey rock. Both show similarities in the strain

localization process, with an early diffuse strain localization pattern well before the

stress peak that evolves progressively toward a reduced number of shear bands pat-

tern. This final pattern, being usually reported in the literature, is associated to the

stress peak and initiation of strain softening.

1 Introduction

This study attempts to review recent experimental observations on two porous

rocks about the progressive evolution from diffuse to localized deformation. Spatial

descriptions of physical quantities and the time evolution of these fields are needed

for this aim, in contrast to more conventional measurement techniques based on

global measurement by transducers positioned outside of the loading device and/or at

the specimen boundaries (no field measurement) or on post mortem characterization

(no time evolution). Such techniques which are referred to as full-field measurements

became more and more popular during the last two decades. They are potentially well

adapted to detecting, during laboratory tests, the transition from the initial (quasi-)

homogeneous regime to the localized regime.
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2 A True Triaxial Cell for Full Field Measurement
and Studied Rocks

A true triaxial apparatus was developed at Laboratoire 3SR in Grenoble (France),

with the aim of characterizing the onset of localization and the post-localization

regime in rocks [3]. The device can apply three independent stresses along the three

space directions of a prismatic rock specimen, and allows its visualization under

loading. A simplified schematic of the apparatus is shown in Fig. 1. The specimens

surfaces, perpendicular to the principal stress (direction 1) and intermediate com-

pressive stress (direction 2), are in contact with rigid platens, which are moved by

two perpendicular pistons, as in some triaxial setups developed previously [4, 6].

The two surfaces of the specimen, perpendicular to the minor stress (direction 3),

are free to deform because the stress is applied by a confining fluid (by means of a

soft silicon membrane). Moreover, one of the two surfaces perpendicular to the inter-

mediate stress (direction 2) is in contact with a hard window, in order to observe the

specimen under loading and take photographs. The intermediate stress can be reg-

Fig. 1 Schematic diagram of the true triaxial apparatus for rocks with its in situ specimen obser-

vation device for full field measurement [3]
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ulated to ensure that there is no deformation along this direction, thus allowing the

application of plane strain loading, which implies that the kinematic of the surface in

contact with the window is representative of the kinematic of the whole specimen,

up to strain localization and beyond that level of stress.

Photographs of the visible surface of the specimen were taken throughout the

loading with a high resolution camera. DIC analysis can thus be carried out on the

resulting images to compute the displacement and strain fields. It is worth noting

that to apply DIC, the observed specimen must have a random pattern, which is here

artificial.

The size of the specimen is 50 mm in the axial direction, 30 mm in the direction

of intermediate stress and 25 or 50 mm in the direction of minor stress, which cor-

responds to slenderness ratios (the ratio between the height and width) of two and

one, respectively. The loading cell can apply a maximum confining pressure of 100

MPa, while the axial and the horizontal pistons can apply forces of 500 and 700 kN,

respectively. These values correspond to a differential stress, with respect to the con-

fining pressures of 670 and 530 MPa, respectively, for a specimen with a slenderness

ratio of two, and half of these values for a 50 mm width specimen.

The first tested rock is a natural red sandstone coming from the Vosges mountains,

Eastern France [2]. It is a pink quartz sandstone (quartz = 93%), a few percent of

which is feldspar and white mica. The sandstone is poorly cemented, its cohesion is

due to the interpenetration between the grains. Its porosity is about 22%. The mean

grains size is about 0.30 mm. Its uniaxial compression strength is about 35 MPa.

The second tested rock is a Callovo-Oxfordian argillite, which has been con-

sidered as a potential host rock for radioactive waste disposal facilities, from the

ANDRA Underground Research Laboratory (URL) at approximately 500 m below

the ground surface. It is a sedimentary rock composed of phyllosilicates, tectosili-

cates, carbonates and pyrite [7]. Clay particles are clustered into aggregates, which

are globally oriented along the stratification, whereas the other mineral inclusions

have no preferential orientation. Its uniaxial compressive strength is about 20 MPa.

3 Selected Results

The mechanical behavior and failure by strain localization in the Vosges sandstone

was extensively studied through axisymetric compression and extension tests [2].

The recent work of [5] has extended the analysis to plane strain compression tests.

Two tests were selected: test BxR_GVR_06 was performed at a lateral stress of

20 MPa and test BxR_GVR_11 at 50 MPa. From [2], we know that the behavior

of the rock at the lowest mean stress is quite brittle, the mean stress dependency

on the deviatoric stress peak envelope is positive (cohesive-frictional behavior) and

the shear bands are dilative. At the highest mean stress, the behavior was more duc-

tile, the mean stress dependency on the deviatoric stress peak envelope was negative

(cap surface), the shear bands were compactive and the inclination of the bands with

respect to the axial loading direction was also higher than for a lower mean stress [1].
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Fig. 2 Test BxR_GVR_06 [5]: (top) differential stress (𝜎1 − 𝜎3) versus axial strain and (bottom)

volume strain versus axial strain; the numbers noted on each curve are the selected photographs

numbers

Figure 2 shows the stress-strain response and global volumic curve measured for

the test BxR_GVR_06. There was first a quasi linear part of the stress versus strain

curve, followed by an incurvation up to a stress peak and a progressive and then

sudden strain softening. The stress level stabilized at the end of the test. The global

volume strain compacted at the beginning and then dilated. The maximum com-

paction corresponds more or less to the loss of linearity of the upper curve. At the

end of the test, the volume strain rate vanished.

Some photographs were selected during the test (Fig. 2): the incremental strain

fields between these images are presented in Fig. 3. The strain field was quite homo-

geneous during the linear part of the stress versus strain curve (increment 8533–

8549). The small fluctuations in both shear and volume strains correspond to the
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Fig. 3 Test BxR_GVR_06 [5]: (the two first lines) incremental second strain tensor invariant (shear

strain) fields; the numbers at the top of pictures correspond to the photographs numbers. (the two

last lines) incremental first strain tensor invariant (volume strain) fields



www.manaraa.com

30 P. Bésuelle and P. Lanatà

noise of the DIC measure. Once the stress versus strain curve significantly left its

quasi-linear regime, which corresponded to a significant reduction of the specimen

volume compaction (increment 8593–8608), the shear strain field was no longer

homogeneous. We distinguished a dense, diffuse strain localization band pattern:

these bands were parallel and conjugated. This pattern was more visible in the next

increment, 8608–8624. A similar pattern was visible in the volume strain field, show-

ing dilatancy in the bands. This step corresponded to dilatancy in the global volume.

Before the stress peak (increment 8624–8655), the complex pattern was less dense

and some shear bands still existed (plastic strain) but were de-activated. The active

shear bands continued to dilate. After the peak (increment 8655–8675), the number

of active bands significantly decreased and the shear and volume dilatancy became

increasingly concentrated in a decreasing number of bands. Then, the testing device,

due to a too small axial stiffness, could not control a stable softening of the speci-

men. During the abrupt softening, one main shear band started to propagate from the

bottom left corner and dominated the other bands (increment 8675–8676). The band

was fully propagated through the specimen at 8677 and was still dilating. The dila-

tancy decreased later (not shown). The inclination of the early bands before the stress

peak, with respect to the axial loading direction, was about 45o, which decreased to

around 30o at the end of the test.

A very similar strain localization process was observed in test BxR_GVR_11

performed at 50 MPa lateral stress. However, the volume strain was compactant in

the bands. The inclination of the early bands before the stress peak, with respect to

the axial loading direction, was about 45o, which stayed around 45o at the end of the

test.

Such a progressive localization process with an early diffuse shear band pat-

tern was also observed in the Callovo-Oxfordian clay rock. Tests BxR_COx_06 and

BxR_COx_13 were performed at a lateral stress of 12 MPa, which corresponded to

the in situ stress of the material.

4 Conclusion

Until now, the strain localization phenomenon in geomaterials was understood as a

propagation or abrupt birth of shear bands from a diffuse strain field associated with

the stress peak of the specimen’s response. The strain softening of the material in

the bands induced a global softening of the specimen. Historically, this aspect came

from observations of the specimens after the tests, in which relatively simple patterns

of shear bands were generally observed. This was also enforced by the theoretical

approach of shear band analysis using bifurcation theory. This approach is generally

quite consistent with experimental results at the stress peak.

The development of more efficient imaging tools and methods for full-field mea-

surement has allowed better quantification of the deformation with better space and

time resolutions and at a smaller scale. The recent results on several porous rocks

suggest that the transition from a diffuse regime to a localized regime is more pro-
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gressive than what is recalled above. A complex pattern of numerous parallel and

conjugated shear bands appears well before the stress peak. These diffuse shear-

band patterns can generate volume strain, dilatancy or compaction, depending on

the material and stress state. Some bands are progressively de-activated, and close

to the stress peak, only a few shear bands stay active which concentrates the deforma-

tion. They are generally prone to strain softening, inducing global strain softening.

This early diffuse shear band pattern questions also the nature of plastic strain in

the studied materials. Can it be homogeneous or is it invariably spatially organized

under shear bands pattern?
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Localization in Plane Strain Compression
of Fluid-Saturated Rock

Roman Y. Makhnenko and Joseph F. Labuz

Abstract Localization in terms of a bifurcation from a homogeneous pattern of
deformation is predicted to be different if the boundary conditions are drained or
undrained. This phenomenon is evaluated in plane strain compression experiments
with water-saturated Berea sandstone, where corresponding poroelastic and
inelastic properties were measured. Non-uniformity of lateral deformation and
clustering of acoustic emission events were used as the experimental evidence of
localization, which occurred soon after the peak stress in both drained and
undrained cases. These observations are in reasonable agreement with an analysis
that predicted negative values of the critical hardening modulus (localization
post-peak) for fluid-saturated sandstone under plane strain loading conditions.

1 Introduction

Elastic, inelastic, and strength characteristics of fluid-saturated rock depend on the
rate of deformation and boundary conditions. Moreover, studies show that the
conditions for localization of deformation can also be different for specimens tested
in drained and undrained regimes Rudnicki and Rice [6], Rudnicki [5]. Even though
localization may result from inhomogeneities or stress concentrations, an alternative
point of view is that this phenomenon is a bifurcation from a smoothly varying
pattern of deformation, where the constitutive description of homogeneous defor-
mation can admit a solution that is compatible with boundary conditions for further
homogeneous deformation, but corresponding to non-uniform deformation in a
planar zone Rudnicki and Rice [6]. In the following, this approach is compared with
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two experimental methods of detecting the onset of localization: one is based on the
deviation of uniform deformation of the specimen and the other is based on clus-
tering of acoustic emission (AE) events. Experiments were performed on
water-saturated Berea sandstone to determine its poroelastic and inelastic properties
and to observe localization in drained and undrained plane strain compression.

2 Background

Rudnicki and Rice [6] suggested a constitutive description that is compatible with
boundary conditions for homogeneous deformation but non-uniform deformation in
a planar zone. The specific constitutive relations for (confined and compressed)
brittle rock can be written in terms of a hardening modulus h. For the case of
changing mean stress P (P′ = Terzaghi’s effective mean stress), h is related to the
tangent modulus htan = (dτ - μdP′)/(dγ - dτ/G), where γ = shear strain, τ = shear
stress, μ = friction coefficient, and G = shear modulus. The RR analysis predicts a
critical value of the hardening modulus at which localization occurs:

hcrit =
G 1+ νð Þ

9
β− μð Þ2
1− νð Þ −

1
2

ffiffiffi

3
p

η+ β+ μ
� �2

" #

ð1Þ

Here β is the dilatancy factor and η = √3 ⋅ s2/τ with s2 being the intermediate
principal value of the deviator stress tensor. This criterion is valid for both dry and
drained deformation (constant pore pressure). The localization of deformation
happens when the condition h = hcrit is met (bifurcation point).

If the drained response is rate-independent, then the alternative limit of
undrained deformation is also rate-independent and a similar bifurcation analysis
can be applied. Rudnicki [5] proposed a form of the constitutive relation for
undrained response, which is obtained from the drained response (Eq. 1) by sub-
stitutions that involve Skempton’s B coefficient and undrained Poisson’s ratio νu.
The following assumptions are involved: (i) the elastic portion of strain increments
can be described by linear, isotropic poroelasticity; (ii) the role of the pore pressure
p in the inelastic strain increments is included by replacing the mean stress P by
Terzaghi’s effective mean stress P′; (iii) the inelastic increment in the apparent
porosity is equal to the inelastic volume strain increment. From Rudnicki [5], the
critical undrained hardening modulus for localization Hcrit can be written as:

Hcrit =
G 1+ νuð Þ

9
1−Bð Þ2 β− μð Þ2
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3 Methods

A Vardoulakis and Goldscheider [7] type plane strain apparatus was used for this
study and modified for fluid-saturated rock testing of 100 × 87 × 44 mm speci-
mens Makhnenko and Labuz [2]. The apparatus combines the positive features of a
constitutive (plane strain) compression test, such that the two-dimensional material
behavior can be evaluated, and a direct shear test, such that the characteristics of the
shear band can be measured. Lateral displacement is measured at two positions,
which allows an evaluation of non-uniform deformation and the onset of local-
ization. Additionally, eight AE sensors are used to monitor microcracking (Fig. 1).
AE locations can be determined to evaluate the onset of localization. For example, a
criterion based on the value of the fractal dimension of the events positions has been
proposed Iverson et al. [1]. However, a simple criterion is used in this study: if 90%
of continuously located AE events with accuracy ra = 3 mm are situated within
sphere of 3ra diameter (=9 mm or 3 standard deviations), the deformation is
described to be localized (Fig. 1b).

Another method of determining localization is to detect when the deformation of
the specimen is no longer homogeneous. Two LVDTs are positioned to measure the
lateral displacement of the specimen (Fig. 1a). Typically, the output of the two
LVDTs is changing at a uniform rate up to the peak axial stress, and just after the
peak, one is approximately constant and the other continues to increase (Fig. 2a).
This behavior is related to the formation of the shear band, when one part of the
specimen slides and the other part remains stationary. The point where the lateral
displacements change rate is taken as the onset of localization.

Fig. 1 a Sketch of the experimental setup and b AE events clustering in the sandstone
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4 Results

Specimens of Berea sandstone were fully saturated with water and loaded to failure
under plane strain conditions. Three drained and three undrained compression
experiments were performed and exhibited similar results in terms of detecting the
onset of localization, so the data here is reported only for one drained and one
undrained test. The drained test was performed with constant (i) pore pres-
sure = 5 MPa and (ii) minimum principal stress σ3 = 10 MPa. Precise measure-
ments of axial and lateral stresses and strains allowed for calculation of the material
parameters: G = 4.6 GPa, μ = 0.79, and β = 0.41, where friction μ and dilatancy β
are reported at the peak Makhnenko and Labuz [3, 4]. This provided calculation of
hcrit from Eq. (1). The undrained plane strain compression test was performed at
σ3 = const = 10 MPa and the initial value of pore pressure was 3 MPa. Pore
pressure increased to 7 MPa during elastic compaction and then decreased to
4.5 MPa when the specimen was dilating before the peak. Values of B = 0.61 and
νu = 0.35 Makhnenko and Labuz [4] were used to calculate Hcrit for the undrained
plane strain compression test.
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Additionally, onsets of non-uniform rock deformation and AE clustering were
obtained from the proposed methods. The results of the three localization criteria
for drained and undrained plane strain compression experiments are presented in
Fig. 3. The response of the undrained specimen is significantly less brittle, which is
explained by the increase in effective minimum principal stress σ3′ caused by
dilatant pore pressure decrease around and after axial peak stress Makhnenko and
Labuz [3].

5 Discussion and Conclusions

The onset of localization in water-saturated Berea sandstone was determined by
three methods: non-uniformity of specimen deformation detected by lateral LVDTs,
clustering of AE events, and a critical value of the hardening modulus computed
from measured elastic and inelastic material properties. In general, for both drained
and undrained compression tests, all three methods provided localization happening
soon after the peak axial stress was reached. In the case of drained compression, all
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the prediction methods for the onset of localization are consistent (lie within
0.15 × 10−3 shear strain) whereas in the undrained test AE clustering was delayed
by 0.5 × 10−3 shear strain and the AE rate is significantly lower. It should be noted
that the detection of the onset of localization with AE locations is sensitive to the
chosen criterion. Also, stress and directional dependency of some material param-
eters (e.g. B, ν, and G), as well as their degradation during material damage, are not
considered here, but influence the reported values of the critical hardening modulus.

Some discrepancy in the results of observed (from non-uniformity of deforma-
tion and AE) and predicted (from the critical value of the hardening modulus)
localization also could be explained by the use of a relatively low effective mini-
mum principal stress (below 10 MPa), where for the drained test, the failure plane
was quite steep, and for the undrained case, the failure mode exhibited features
associated with axial splitting.
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3D Particle-Scale Displacement Gradient
to Uncover the Onset of Shear Bands
in Sand

Andrew M. Druckrey and Khalid A. Alshibli

Abstract In situ synchrotron micro-computed tomography (SMT) scans of a
specimen composed of uniform silica sand were acquired at multiple strains during
a triaxial compression test. Individual sand particles were identified and tracked
through multiple strain increments. The paper presents the concept of displacement
gradient to expose the inception of shear bands (strain localization) in sheared sand.
Each particle’s neighboring particles were identified and translation fields for all
particles were calculated. The second order norm between the particle translation
vector and neighboring particles translation vectors were averaged, resulting in a
relative displacement value for each particle. The relative displacement concept is
effective to uncover the onset of localized shearing within sheared granular
materials.

1 Introduction

Granular materials are composed of discrete particles that translate and rotate
against neighboring particles when they are sheared. Shearing of granular materials
localizes into zones of intensive shearing known as shear bands. There is extensive
literature about experimental measurements and numerical modelling of factors that
influence the onset and properties of shear bands. In some cases, failure is not
manifested through a single well-defined shear band which makes it difficult to
identify the mode of failure. Investigations of mechanisms leading to strain local-
ization into shear bands in granular material experiments have been investigated
using discrete element method (DEM) [9–11], digital image correlation
(DIC) [7, 12], x-ray computed tomography (CT) [3, 4, 6, 8, 13], as well as theo-
retical and numerical methods [1, 2, 14]. Traditional particle kinematics alone do
not uncover intermittent strain localization during hardening regime or the evolu-
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tion of strain localization into a single shear band at failure. Few researchers have
investigated intermittent local shear bands formation during hardening phase using
2D DEM or DIC techniques.

2 Experiment

A silica sand with grain size between US sieves #40 (0.429 mm) and #50
(0.297 mm) was used in the experiment. A small triaxial apparatus described in
Hasan and Alshibli [8] and Druckrey and Alshibli [4] was setup in beamline 13BMD
of Advanced Photon Source (APS), Argonne National Laboratory (ANL), Illinois,
USA. The specimen is cylindrical and initially measures about 10 mm in diameter
by 20 mm in height. The experiment was conducted on a very dense dry specimen

Fig. 1 PSR versus axial
strain and volumetric strain
versus axial strain
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under drained condition at 400 kPa confining pressures. SMT images were collected
at multiple compression stages of the experiment. An initial image was acquired, the
top end plate was moved at a constant compressive displacement rate of 0.2 mm/min
to a predetermined target displacement, loading was paused and the next image was
acquired. The spatial resolution of the images is 11.18 μm/pixel. Compressive Load
and displacement measurements were also collected during each of the experiments
and the principal stress ratio (PSR = σ1 ̸σ3) and volume change (εv) versus nominal
axial strain (εa) relationships are presented in Fig. 1. Markers in Fig. 1 label axial
strains at which SMT scans were acquired.

3 Image Processing and Particle Tracking

Image processing was conducted using the procedure described in Druckrey et al.
[5]. Grayscale SMT images were initially filtered and binarized, and particles were
separated using a combination of watershed, distance transform, and numerical
reconstruction algorithms that removed small areas of contact between particles.
With particles no longer in contact, each particle was assigned a unique label
number and contacts were restored. SMT technique produced high quality grayscale
images that resulted in accurate particle identification after processing. Images at
each axial strain increment were then quantified using the code described in
Druckrey et al. [5] and particle centroid, volume, surface area, short axis length,
intermediate axis length, long axis length, and contact information were extracted
and saved for each particle. In addition, orientation of the particle long, interme-
diate, and short axes were computed and saved in output files for further analysis.

An incremental particle tracking code was developed to track individual particles
using particle morphology data, similar to the particle tracking code in Druckrey
and Alshibli [4]. The magnitude of particle displacement was then calculated as the
distance between the centroid of a particle in the first SMT image (x1, y1, z1) and the
centroid of the matching particle in the second SMT image (x2, y2, z2). Particle
rotations were also calculated based on differences in long axis orientations between
the increments. Applying this particle kinematics analysis to the entire specimen at
multiple strains is similar to 3D digital volume correlation. The particle kinematic
measurements are displayed in Fig. 2 in the plane parallel to specimen shear band at
critical state, displaying the shear band at its narrowest point of view. Particle
displacements are normalized for each strain increment by the axial displacement of
the specimen top plate (i.e., global compression). Strain hardening for this exper-
iment took place between εa = 0–4.9%, peak PSR was reached between
εa = 4.9–6.9%, followed by softening between εa = 6.9–11.8%, and critical state
transpires thereafter (Fig. 1). The specimen failed via a single well-defined shear
band that initiated near the peak PSR (εa ∼ 4.9%) and is easily identified from
particles displacements and rotations during the critical state (εa > 11.8%) of the
experiment (Fig. 2). Particle rotations do not exhibit localization during earlier
stages of the experiment. Particle displacements show a nucleation of the shear
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band, but are not definitively localized until post-peak strain softening stage. Such
conventional particle kinematics has been widely used to analyze and quantify the
failure mode of granular materials, but mask many intricacies and lesser intermittent
localized strains (local shear bands, LSB) during hardening that lead to failure,
especially if a specimen fails through bulging.

Intricate zones of localized strain within a specimen that are not exposed by
particle kinematics can be mined from the data by comparing a particle’s dis-
placement vector with that of all of its neighboring particles. The concept of relative
particle displacement branches from kinematic displacements and relates a particle
displacement vector (δ) to that of all neighboring particles in contact with that
particle (δ1, δ2, …, δn), using the second order norm of vector differences:

rdi = norm δ− δið Þ ð1Þ

RD=
1
n
∑
n

i=1
rdi ð2Þ

where rdi is the magnitude of relative displacement for a single contacting neigh-
boring particle and n is the number of contacting particles. The overall magnitude of
relative displacement (RD) is the average of all individual relative displacement
vectors. RD not only differentiates vertical displacements, but localized displace-
ment in any 3D direction. Relative displacement better captures the shear between
particles, exposes small localized strains within a granular material, and allows for

Fig. 2 Maps of particle displacements and rotations based on SMT measurements
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quantification and visualization of local shear bands (LSB) throughout the exper-
iment as well as analysis of mechanisms that contribute to the onset and growth of
the major shear band if any. Figure 3 displays the Incremental relative displace-
ments for the experiment (slices are taken normal to final shear band for better
visualization). Zones of localized strain, not necessarily shear bands, sporadically
developed as early as the first strain increment (εa = 0–1%). Then at εa = 1–2%,
strains localized into multiple LSB with thicknesses of 1d50 to 3d50, where d50 is the
mean particle size (0.36 mm). The LSB exhibited preferred orientations parallel and
perpendicular to the inclination of the of final major shear band that would develop
at a higher strain. The LSB became more developed and more defined in the third
strain increment (ε1 = 2–3.4%), where multiple cross-hatched LSB develop in
multiple directions. These multiple intersecting LSB typically extend over the entire
width of the specimen in conjugate directions with orientations similar to the final
shear band. The LSB began to retreat and merge into a zone intensive shearing near
the center of the specimen at the end of strain hardening phase of the experiment

Fig. 3 Normalized relative displacements in the loading direction. Color scale shows relative
displacements normalized by the specimen global axial compression imposed by the top end plate
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(ε1 = 3.4–4.9%). The zone of highly disordered particle relative displacements near
the end of hardening is still in the general direction of the final shear band, although
LSB in other directions are still growing from the zone of disarray. During the peak
PSR phase (ε1 = 4.9–6.9%), most LSB have merged into a large zone of disordered
relative displacements that has an overall inclination of the final major shear band,
while few minor LSB were still extend from the zone of intensive shearing. The
final major shear band fully develops during the softening phase of the experiment
and continues through the critical state phase. It has a thickness of 9d50 to 10d50.
Particles within the final major shear band exhibit a high relative displacement
values which uncovers an interesting experimental evidence that intensive shearing
and interaction takes place between particles within the shear band.

4 Conclusions

3D SMT was used to capture the evolution of failure mode of a triaxial specimen
composed of uniform sand. The concept of relative particle displacement is intro-
duced and used to visualize and quantify intricate zones of localized strains and
local shear bands that cannot be exposed when one uses particle translation and
rotation alone. Local shear bands in triaxial experiments can be better analyzed and
quantified in 3D using the second order norm of differences in displacement vec-
tors. This technique exposes more intricate strain localizations than conventional
particle kinematics approach. RD technique uncovered the onset of multiple local
shear bands that develop during the hardening phase and eventually evolve into
fewer persistent shear band(s).
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Load Transmission by Granular Materials

Danuta Lesniewska

Abstract The first attempts to recognize mechanisms of load transmission in gran-
ular materials using photo-elastic technique were undertaken in the first half of the
20th century. Integrated photo-elasticity was employed for further experimental
studies on big granular assemblies. This paper contains new proposal of non-standard
analysis of photo-elastic images of deforming granular material. This proposal is
based on defining some basic components of 2D Fourier transform of an image.

1 Introduction

The first attempts to recognize mechanisms of load transmission in granular
materials using photo-elastic technique were undertaken in the first half of the 20th
century. Integrated photo-elasticity was employed for further experimental studies
on big granular assemblies. Works of Dantu [2], Wakabayashi [10], Drescher and
De Jong [4], Drescher [3], Allersma [1], Majmudar and Behringer [6], Oda and
Kazama [8] and others led to the widely accepted concept of ‘force chains’ bearing
most of the load put on a granular material.

It was suggested by Oda and Kazama that physical mechanism of a granular
material’s deformation is related to the ‘force chains’ buckling. No substantial
progress on other possible physical mechanisms were made since then and also
creation and evolution of the whole ‘force chains’ network was not studied.

Recent developments of digital photography and image analysis created new
tools to trace deformation and ‘force chains’ network. Lesniewska and Muir Wood
[5] and Muir Wood and Lesniewska [7] found that photo-elastic images of ‘force
chains’ are not suitable for the analysis using standard image analysis tools. The
problem lies in the specific nature of ‘force chains’, being very thin and elongated
structures, difficult to be captured by any image segmentation procedures.
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This paper proposes some new way of non-standard analysis of photo-elastic
images of deforming granular material. The proposal is based on defining some
basic components of 2D Fourier transform of an image. These components repre-
sent different features of ‘force chain’ network and can help to look for charac-
teristic material lengths, like average dimensions of ‘force chains’ mesh, average
characteristic distance between neighbouring ‘force chains’, average length of
‘force chains’ at different stages of deformation. The idea of the proposed approach
comes from the analogy between poly-crystals and granular materials and between
Lauegrams, used to measure internal structure of crystals, and 2D Fourier
transforms.

2 Experimental Setup

The paper presents series of 2D Fourier transforms of photo-elastic transmission
images, representing large (consisting of ∼1e + 6 grains) granular assembly. The
assembly can be classified as pseudo 2D, because it is placed in a narrow rectan-
gular box, enforcing plane strain condition on macro (sample) scale, but individual
grains are spherical and form several layers, none of them perfectly plane. The
assembly deforms under varying boundary conditions (boundary load and boundary
displacement).

The level of external load is selected in such a way, that photo-elastic effect
(enforced birefringence) in granular material is easy to observe. Principle of inte-
grated photo-elasticity is used (transparent grains immerged in immersion liquid
having the same refractive index as grains’ material). The analysis refers to
photo-elastic images of granular samples, which cover the whole sample (‘macro’
scale, the area of an image equal to ∼250 × 200 individual grains—glass granules
of D50 ∼ 1 mm). Similar test arrangement was detaily described by Lesniewska and
Muir Wood [5] and Muir Wood and Lesniewska [7].

The photographs from one of the tests, presented in Fig. 1 (column A), were
taken using RGB scientific grade camera and later transformed to grayscale images
to calculate Fourier transforms. Specific type of circular polariscope was used,
equipped with rectangular polarizer and analyser and thus giving much better
quality of photo-elastic images of granular sample under load.

3 Applications of 2D Fourier Transforms

Fourier analysis is a well known analytical tool transforming a sample of data
points (i.e. brightness of image pixels) into a mathematically equivalent sum of
component sine waves of different frequencies and amplitudes [9]. The amplitudes
of each of the component sine waves in the Fourier transform expresses the relative
contributions of each frequency of variation to the periodicity of the original data.
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A. Photographs in circularly polarized light B. Fourier transforms
1. surcharge on upper horizontal boundary p = 0.20MPa

2. p = 0.80 MPa

3. p = 1.60 MPa

4. p = 1.60 MPa, right boundary displacement d = 1.5mm

Fig. 1 Column A Force chain system development during uniform loading of granular sample
(glass granules D50 ∼ 1 mm) on top boundary (rows 1–3) and after 1.5 mm displacement of right
boundary (row 4). Column B Corresponding 2D Fourier transforms
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Fourier transforms are the basic tool in constructing different types of image
filters, mainly those reducing optical noise. Some DIC or PIV software also uses
frequency space to obtain displacement fields from a series of digital images of a
deforming body.

There exists one more way of utilizing 2D Fourier transforms—they can be
regarded as a direct subject of analysis themselves, similarly to Laue patterns in
crystallography, which can be interpreted as ‘physical Fourier transforms’, and are
used to measure internal structure of crystals or nanostructures [9].

4 Possible Applications of 2D Fourier Transforms

The numerical computation of the Fourier transforms presented in this paper
(Figs. 1 and 3) were done using DaVis8 software.

Figure 1 (column A) represents some typical experimental data—2D projection
of photo-elastic response of 2 cm thick granular sample, consisted of uniformly
graded glass granules (D50 ∼ 1 mm). Due to dimensional uniformity of grains
some crystallization effect can be expected.

The granular sample undergoes growing external loading on top boundary
(Fig. 1A, images 1–3) and later some uniform displacement on right boundary
(Fig. 1A, 4). Figure 1A shows gradual development of complex force chains sys-
tem, obviously showing traces of geometrical structure and order. This order cannot
be analysed using standard image analysis tools, however, due to its highly discreet
nature (it is not possible to use image segmentation to find characteristic features of
force chains system for example).

The other possibility is to transform the images into frequency spectrum—

Fig. 1B shows Fourier transforms of images shown in Fig. 1A. Some evolution of
Fourier transforms with value of external loading is also observable, but significant
difference exist only between the first phase of relatively low value of external load
(0.2 MPa) and the others.

There exists the ring-shaped distribution in the power spectrum of Fourier
transforms throughout the whole loading range—it is well known from other
applications that such a ring demonstrates periodicity at intermediate spatial fre-
quencies, that is equivalent in all directions in the image (this is most probably
related to the sample ‘crystallization’).

Fig. 2 Idealized sketch of
characteristic geometric
features visible in 2D Fourier
transforms of loaded granular
material (Fig. 1)

50 D. Lesniewska



www.manaraa.com

A. Artificial Fourier transforms B. Reverse Fourier transforms – ‘original’ images 

1 

2 

3 

4 

Fig. 3 Idealized components of Fourier transforms (A) and their reverse (B), showing
corresponding force chain networks
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In course of the loading process other objects appear in Fourier power spectrum,
most likely related to emerging and stabilizing force chain network. As the geo-
metric features visible in Fig. 1B (rows 2–4) are quite regular (they are sketched in
Fig. 2) it is possible to recognize these directly related to force chains and their
arrangement.

It can be assumed that Fig. 2 consists of a ring-shaped area and a double fan,
which can have complicated structure, but is most probably related to anisotropic
force chain network, visible in Fig. 1A.

Figure 3 shows the result of simple back-analysis based on Fig. 2. Column A of
Fig. 3 contains artificial images of features which could be included in Fig. 2 (ar-
tificial Fourier transforms). Only features characterizing the double fan are studied.
Column B of Fig. 3 shows the reverse Fourier transforms of the images from column
A. Figure 3B shows that the information on the force chain network geometry is
really coded in the double fan. The fact that the extent of the fan is quite well defined
can give the limiting range of force chains directions within a granular sample
(Fig. 3B 1 and 3). Also some information on changing length of force chains can be
deduced from the dimensions of double fan (compare Fig. 3B 1 and 2). Figure 3B,
row 4, explains the complexity of force chain networks: the double fan may cover a
range of possible force chains directions. Such different directions are present in
Fig. 1A, but using the Fourier transforms of Fig. 1B it is possible to determine at
least their range.

5 Conclusion

Direct analysis of Fourier transforms can help to find characteristic material lengths,
which are necessary to model granular material behaviour: average dimensions of
‘force chains’ mesh, average characteristic distance between neighbouring ‘force
chains’, average length of ‘force chains’ at different stages of deformation.
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Periodic Stick-Slip Deformation
of Granular Material Under
Quasi-static Conditions

Danuta Lesniewska, Magdalena Pietrzak, Michal Nitka
and Jacek Tejchman

Abstract Stick-slip motion is generally observed in situations involving dry fric-
tion. It is commonly present in granulates and results from interactions at
micro-scale. Analysing the data base collected during a series of small scale model
tests the evidence was found of periodic deformation mode, induced within the
granular material by a series of very small displacement increments. Image analysis
was used to study the phenomenon. It was found that there exist minimum dis-
placement of the external boundary necessary to produce ‘plastic localization’,
being a function of the external load and grain coarseness.

1 Introduction

Stick-slip motion is generally observed in situations involving dry friction. It is
commonly present in granulates and results from interactions at micro-scale. If
Coulomb-Euler laws of friction are employed and it is acknowledged that grains
exhibit also elastic behaviour, it is possible to explain qualitatively stick-slip motion
using simple model of an interrupted oscillator [1].

Analysing the data base collected during a series of small scale model tests
(performed on glass granules of D50 ∼ 1 mm and coarse Borowiec sand) the evi-
dence was found of periodic deformation mode induced within the granular
material by a series of very small (∼1/10 of grain diameter) quasi-static external
displacement increments. Image analysis by geoPIV-RG and DaVis8 software was
used to study the phenomenon.
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2 Experiments

The paper presents results of PIV (particle image velocimetry) analysis performed
on images of large (consisting of ∼1e + 6 grains) granular assembly. The assembly
can be classified as pseudo 2D, because it is placed in a narrow rectangular box,
enforcing plane strain condition on macro (sample) scale. Individual grains are
spherical and form several layers, none of them perfectly plane. The assembly
deforms under varying boundary conditions (boundary load and boundary dis-
placement, like in Fig. 1).

PIV analysis refers to the images covering the area equal to ∼250 × 200
individual grains (glass granules of D50 ∼ 1 mm). Similar test arrangement was
described in detail by Lesniewska and Muir Wood [2], Muir Wood and Lesniewska
[3] Lesniewska et al. [4] and Pietrzak and Lesniewska [5]. RGB scientific grade
camera was used to record the tests. The resolution of camera was ∼2500 × 2000
pixels. One average grain was represented by ∼10 × 10 pixels.

3 DEM Simulations

In order to simulate real tests, the discrete element method (DEM) was used. The
open source 3D code YADE, developed at Grenoble University [6], was employed.
So called soft-particles approach was accepted (i.e. particles deformation repre-
sented by their overlap). At first stage of the simulation by YADE, interaction

Fig. 1 DEM sample,
simulating conditions of real
test for one layer of grains
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forces are computed for elements (spheres) in contact. In the second step, Newton
second law of dynamics is used to compute for each element the resulting accel-
eration, next integrated to find new element position. To reduce the calculation
time, only one layer of grains was modelled.

Two sets of parameters were used, listed in Table 1. In order to increase the
rolling resistance of perfect spheres, contact moments were introduced [6]. The
normal force contributed to the rolling resistance only. The increments of contact
moments were calculated by means of rolling stiffness.

4 Discussion of Results

The results of PIV analysis, performed both on real images (photographs taken
during the experiments) and on artificial images, created during DEM simulations
(Fig. 1) are presented in Fig. 2. The figure contains, in case of real, experimental
images, maps of volumetric and shear strains for four subsequent right boundary
displacement increment Δd ∼ 0.1 mm (columns A and B). Column C of Fig. 2
shows shear strain maps obtained for DEM simulations for the same loading
conditions and boundary displacements.

4.1 Cyclic Behaviour

Figure 2A, B show the characteristic sequence of incremental (representing one
displacement step of moving boundary) strain maps, typically repeating itself
throughout a whole model test. The last one in sequence appears a distinct strain
localization (Fig. 2A, B, row 4). Each localization incident is proceeded by several
displacement steps, during which shear and volumetric strains are much smaller and
relatively uniformly distributed inside the wedge shaped region, adjacent to the
moving boundary (Fig. 2A, B, rows 1–3).

It can be seen from Fig. 2A that relatively uniform deformation within the
wedge (rows 1–3) is mostly of dilative nature (blue colour), while strong local-
ization event causes contraction (red and yellow colours) to appear within the
wedge and dilation prevails inside the shear band (row 4). Thus the granular
material within the wedge undergoes alternate transition from weakening to

Table 1 Two sets of parameters used in DEM simulations

Number of set Young
modulus (kPa)

Poisson
ratio

Angle of internal friction (°) Rotation
resistance

1 7.5e08 0.3 35 0.02 0.01
2 2.4e10 0.3 20 0.3 0.005
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p = 1.6 MPa, ΔΔd = 0.1mm
phase A. volumetric strains B. shear strains C. shear strains

nr experiment experiment DEM simulations

1 

v ∈ (-1.0, 1.0%) max=1.20%

parameter set 1, Table 1

max=0.16%

2 

v ∈ (-1.0, 1.0%) max=1.00%  max=0.10%  

3 

v ∈ (-1.0, 1.0%) max=1.85% max=0.11%

4 

v ∈ (-1.0, 1.0%) max=5.10% max=0.15%

Fig. 2 Single cycle of incremental deformation behind the model wall, visualized by PIV
analysis: A, B—volumetric and shear strain maps obtained for four subsequent wall displacement
increments (model tests), C—corresponding shear strain maps obtained from DEM simulation
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strengthening states during the wall movement. These alternate phases of defor-
mation could be called ‘elastic relaxation’ and ‘plastic localization’ of strains.
‘Elastic relaxation’ phase produces small and dispersed shear strains (stick), while
‘plastic localization’ significant and localized shear strains (slip).

A thorough analysis of deformation fields from many tests suggested that also
within a shear band occur cyclic changes. A simple measure of deformation
—maximum value of shear strains within shear band was selected to demonstrate
this periodic behaviour. It is presented in Fig. 3, which shows (in grey colour) the
relation between maximum shear strain and the value of boundary displacement in
one of the model tests. Each of localization incidents can be easily defined in Fig. 3
by a peak value of shear strains. The distance between adjacent peaks (a period) is
between 3 and 5 unit displacement increments (Δd ∼ 0.1 mm) in Fig. 3, mostly 4
increments (∼4 increments on average). The finding that there exists, for certain test
conditions, a minimum value of boundary displacement, necessary to activate strain
localization, is important to arrange properly experiments in which image analysis
is planned to be used. Too big boundary displacement may cause deformation
outside the range of PIV (DIC—digital image correlation) applicability [7], while
too small may not activate strain localization at all.

Figure 3 shows the minimum difference between peak shear strains and back-
ground level of diffused deformation about 100%, while maximum difference
reaches 400%.

Fig. 3 Relation between maximum shear strain within shear band and wall displacement in one of
the model tests (grey) compared to the results of corresponding DEM simulation (parameters set 1,
black). Each displacement increment Δd equal to 0.0625 mm, p = 1.6 MPa
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4.2 Minimum Displacement

It was found that the minimum displacement of the external boundary (model of
rigid retaining wall), necessary to produce ‘plastic localization’ depends on the
value of the external load (the higher the load, the greater the value of minimum
displacement, what seems to be quite obvious) and is also a function of grain
coarseness (glass granules in immersion liquid, dry glass granules and sand were
compared). The lack of space does not allow to present the results obtained for
course Borowiec sand and dry granules—Fig. 4 shows synthesis of some 20 tests
performed on glass granules submerged in immersion liquid (clove oil). Each point
in Fig. 4 is an average calculated from 2 or 3 tests. The linear relation between
length of the ‘cycle’ and the external load is obtained.

4.3 Comparison with DEM Simulations

Only some selected results of DEM simulation are presented in this paper, namely
maps of shear strains produced by PIV for pairs of images created by DEM
(Fig. 2C) and maximum values of shear strains (Fig. 3, in black colour). The res-
olution of DEM images was lower than the resolution of camera images, so more
continuous picture of shear strain maps was obtained for DEM.

The difference in resolution does not explain however that only qualitative
similarity between experimental data and simulation can be observed in Fig. 2, as
neither the geometry of shear band nor the range of shear strains are close. DEM
simulation gave definitely smaller strains than the experiment. This is clearly visible

Fig. 4 Relation between the average number of displacement increments Δd = 0.0625 mm
(length of the ‘cycle’) and the value of external loading
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in Fig. 3, which also does not show an indication of cyclic behaviour, so clear in
case of the real test. Figure 2C could suggest some cyclic changes in shear strain
maps, however it is much less convincing than Fig. 2A, B.

The reasons for this discrepancy may be numerous, as the DEM model is built in
1:1 scale and contains a lot of grains and some parameters which cannot be
determined experimentally, leaving the only available trial and error method.

First the influence of material parameters was checked (set 2, Table 1), however
without much success—the shear band was still located far from the real one.
Further research on the topic is continued.

5 Conclusions

A linear correlation between minimum displacement activating strain localization
and the level of external load was found for granular samples. Finding physical
limits on boundary displacement have an influence on experimental and numerical
testing, as the proper choice of external deformation increment is crucial to obtain
valid results, if image analysis is planned to be employed [7].
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Modeling Physico-Chemical Degradation
of Mechanical Properties to Assess
Resilience of Geomaterials

T. Hueckel, M. Ciantia, B. Mielniczuk, M.S. El Youssouffi
and L.B. Hu

Abstract It is widely accepted that critical properties of geo-materials that play a
key role in failure of earth-structures undergo often a substantial evolution induced
by non-mechanical processes and variables. That includes: hydro-thermal fracture,
thermal collapse, chemical mass removal or accretion (dissolution or precipitation),
chemical shrinkage/swelling, drying shrinkage, capillary force evolution during
pore water phase change. The properties affected are: strength in all its manifes-
tation, compressibility, permeability, thermal conductivity, to mention just a few.
The physical processes involved are either natural or engineered. Their phe-
nomenology is per se a conundrum, as often they constitute a series of parallel or
sequential processes. A review of several phenomena leading to geomaterial
degradation, and methodology is presented to deal with multi-physical couplings in
constitutive modeling. In plasticity, the central constitutive function is a hardening
rule. Also in this case, phenomenological observations indicate a chemo-
mechanical, two-way coupling. Other degradation phenomena discussed include
drying—cracking, and or the role of suction induced hardening in unsaturated
materials.
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1 Introduction

One of a most common misconceptions in structural mechanics and geo-mechanics
is to perform failure analysis assuming that the properties of the materials involved
are those of a “nominal” material, i.e. a material as it was at the moment of its
manufacturing, or of the placement of the structure into the soil mass. However,
over the recent years it became widely obvious that critical properties of materials
that play a key role in failure undergo invariably a substantial evolution induced by
non-mechanical processes and variables, referred to in general as “material
weathering”, or “material wear”. Such processes may be spontaneous, engineered,
or “inflicted” (by error, or erroneous, or unpredicted usage). The mechanisms being
part of the above mentioned processes include: hydro-thermal fracture, thermal
collapse, chemical (biological) mass removal or accretion (dissolution or precipi-
tation), chemical shrinkage/swelling, drying shrinkage and cracking, capillary force
evolution during pore water phase change. Many of these processes are seasonally,
or daily, cyclic, and their recurrence may count from hundreds to million times,
with accumulated irreversible strain, damage and change in conductivities.

The properties affected are: strength in all its manifestations, deformability,
permeability, thermal conductivity, to mention just a few. The physical processes
involved are not well identified, and are subject of inquiry per se. Their phe-
nomenology is a conundrum, as often they constitute a series of parallel of
sequential physic-chemical processes of which we have only fragmentary
knowledge.

The currently accepted practice required by law, standards and codes, and phi-
losophy of legislation supporting them to deal with such processes are limited
exclusively to the concept of factor of safety, which is a single number, to reduce
the allowable load. However, it is widely perceived that the depth of considerations
to arrive at the values of safety factor are disproportionally simplistic given the
enormous progress in computational capabilities, on one hand, and in under-
standing of the behavior and of the properties of the materials. While several
branches of engineering evolved to base the design on the long-term performance
analysis, many others (including civil engineering) rarely even consider long-term
processes.

However, there is a growing social expectation to provide infrastructure that
would be resilient in the circumstances, not only of the routine loading, but also
exceptional loading, including extreme and accidental exposure. This expectation
seems to derive from less than satisfactory performance of the infrastructure, urban
systems, as well as individual structures during recent hurricanes Katrina, and
Sandy, repeated flooding across EU and US, including the coastal flooding, the
tsunami disaster in Fukushima, the overall deterioration of roads and bridges in the
US, the inundation of cities, which may be, or not, related to climate change.

With the new technologies entering the common practice, or being studied, like
CO2 sequestration, fracking, methane hydrate exploitation, nuclear waste disposal,
geo-thermal energy exploitation, etc., this leads to the expectation, that they be
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designed as resilient, which implies that as many as possible scenarios of loading of
lesser probability of occurrence be examined, and long-term performance analyses
be conducted. That clearly implies multi-physics performance analysis, and
knowledge and thorough investigation of phenomena potentially taking place.

The paper focuses on a series of phenomena of geomaterial degradation (short
and long term) and methods to model them via thermo—and chemo—plasticity and
—elasticity, emphasizing their multi-physics couplings and multi-scale description.
The very meaning of degradation implies a gradual loss of engineering qualities,
and we will leave aside similar, interesting that are of scope of this specific
definition.

2 The Essence of Time-Dependent Degradation
and Resilience Assessment

Classical constitutive modeling knows only one trick to deal with a time-dependent
irreversible evolution of geomaterials, which is a visco-elastic or -plastic
creep. However, it becomes increasingly clear that a generic creep, with its explicit
dependence on time is of very limited use in providing any controllability of the
process. What is being sought are the mechanisms behind the time dependence and
the variables that allow the processes to be controlled, as much as it is possible.

Degradation is viewed as processes that are chemical or physical in nature,
usually, but not necessarily developing over long term. Often these processes are
not at all, or poorly, controlled, frequently even ignored, intentionally, or not,
typically because of lack of imagination that their negative outcome could be
quantified, predicted and often prevented.

Four types of processes can be considered as examples of degradation: chemical
reactions, non-reactive chemical phenomena, and mineral transformation, affecting
material properties, and finally, water phase-transition effect in drying cracking.
Two of them are discussed below.

In the first category, such the degradation processes are caused commonly by
chemical reactions with the environment, enhanced by temperature and humidity
variations, linked either to diurnal, seasonal cycles, or related to the climate change.
They may be explicitly cyclic, but often are related to natural irregular environ-
mental variations. It is also highly relevant in the phenomena of sinkholes, CO2

sequestration technology, and in nuclear waste disposal. In the latter area it has
recently become a point of scrutiny, because of the corrosion reaction induced by
bacteria at the contact between steel canisters and clay. The chemical reactions are
dissolution of minerals, their precipitation, mineral transformations, as in natural
analogue for nuclear waste disposal [1], are typically characterized by reaction rate
equations, which explicitly make them time-dependent. An additional time effect
may come from diffusion/advection rate dependence.
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The non-reactive chemo-mechanical coupling is characterized by an instanta-
neousness of chemical change, like water salinity change, leading to
swelling/shrinkage, or inundation of pore water with aromatic contaminants [2].
The latter has been reported to induce a highly stress dependent changes in
hydraulic conductivity in clay based landfill liners. The phenomena involved are
osmosis, ion exchange, to mention a few. A time-dependence in these phenomena
comes from a short-term diffusion of ions or water.

The third group of degradation phenomena addressed is physico-mechanical in
nature and regards the effects of phase transition of soil water, namely that of
drying-cracking. Drying-cracking is an effect critically affecting almost any type of
soil structure, from landfill liners, to nuclear waste disposal barriers, to levees. The
basic physical phenomena involved are evaporation of pore water, ensuing soil
shrinkage, evolution of capillary forces and menisci, and air entry, and macroscopic
cracking. They tend to occur at least three scales. The time-dependence results from
the process of evaporation and diffusive-advective transport of water toward the
interface with the air.

To make earth structures resilient in extreme conditions, one needs to conduct a
performance assessment. That requires identifying scenarios under which the
material and earth structures will be functioning. Within such scenarios it is critical
to thoroughly understand the complexity of phenomena and mechanisms devel-
oping, usually over long-term. That includes determining which variables and
properties control the phenomena involved. The performance assessment requires
developing constitutive models (most commonly coupled) for the phenomena and
mechanisms and implement them within numerical codes.

3 Modeling Framework for Degradation and Resilience
Assessment

In what follows we limit ourselves to chemically, thermally, or phase-transition
induced degradation of geomaterials. That leaves outside processes of degradation
due to earthquakes, physical wear, etc. We also focus on degradation of mechanical
and hydraulic properties of geomaterials.

There are countless chemical processes and reactions that may impact the
mechanical properties of geomaterials. The most important in the present context are
removal or addition of mass of minerals within the pore space. This may occur
through dissolution of precipitation. The result of such mass loss/gain for the
mechanical properties is a strength increase or decrease, direct chemical strain,
usually volumetric swelling or compaction. Also other properties of relevance may
be affected, such as hydraulic and thermal conductivity. Another type of change is in
ionic content of pore fluid at the interface with the materials solids. In materials that
are electrically charged, as clays, it produces swelling or shrinkage, resulting often in
a change in strength and compressibility, as well as in hydraulic conductivity.
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The causes of the mentioned processes are diverse. They may result directly
from the technology, as injection of water or vapor, as in fracking, or in geothermal
technologies, injection of CO2 in technologies related to its geological sequestra-
tion, or specific chemicals, for instance acids, as in fracking. Some processes that
are of interest are natural processes as a part of diagenesis, like pressure solution.
Similar processes are involved in subsidence due to oil or gas extraction, such as
resulting compaction.

To account for the role of chemical, thermal or physical changes in the
mechanical material response one needs to formulate a framework of balance laws
and a set of constitutive hypotheses, taking into account the following features of
geomaterials. First, one needs to recognize that in many cases, the above changes
occur because of the two- (or three-) phase nature of geomaterials. Second, such
changes often consist of interaction (of all sorts) between the phases, including
mass, or momentum, or heat exchange. Next, specific mechanisms and corre-
sponding variables need to be identified and mathematically described to couple the
mechanical properties of the soil solids to their chemistry, and in particular to the
evolution and possibly transport of chemical species. Finally, the changes, and
corresponding mechanisms can occur or be described at different geometrical or
temporal scales, the fact that needs to note that to describe total free energy in
two-phase, multi-species reactive porous medium be incorporated in our
framework.

To start with let us consider the material free energy, in which the work by total
stress, σ during the process of deformation dε, and heat must be supplemented by
the work of chemical potential μk, K (mass based, [J/g]) during addition of mass,
mk,K of species of both phases, (k are indices for the species, K are for phases); ℌ
being entropy, and T absolute temperature

dΨ= σdε−ℌδT + ∑
k,K

μk,Kmk,K ð1Þ

Species may be entities of any kind, pore water, adsorbed water, other fluid
species, minerals, ions, even entire rock. Mass of species added to, or removed from
the system and energy associated with the addition/removal (i.e. chemical potential
δμkK = δpK

ρkK
+ RT

mðMÞ
k

δðln xkKÞ are the only variables related to the chemical processes.

In this definition, R = 8.31451 J/molK is the universal gas constant, h is entropy,
T [K] the absolute temperature and mk

(M) is the molar mass of the species k, e.g. for
free pore water mw

(M) = 18 g, pK is pressure or mean stress in phase K, assumed as
equal in all the species of the given phase, whereas xkW are molar fractions of the
species k in phase W, which is actually the mass variable. We will use both the
changes in mass and or chemical potentials in reaction equations, as well as to
quantify the effect that reactions make on the mechanical properties of soil/rock.

The central challenge is to derive constitutive properties of the solid phase,
which may be loosing mass, inclusive of the adsorbed water. For that task we shall
adopt a strategy proposed originally by Heidug and Wong [3]. The free energy of
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the solid phase is represented by the difference between the total energy of the
whole system of porous medium and that of free pore water, the latter classically
defined per unit volume of the fluid phase as

δΨW = μwWδmwW + ∑ μsWδmsW −ℌWδT − pWδvW ð2Þ

The first term describes molecular water mass change, the second term, with the
summation over the components msW implies all changes: in ionic content in free
water, as well as mineral relative mass changes, being dissolved into, or precipitated
from the liquid phase, or finally transported away, the last term is the mechanical
work associated with the water volume content change.

Following Heidug- Wong and assuming that solid and fluid have the same
temperature, the free energy of the reactive solid phase becomes

δΨS = δΨ− δΨW = σδε+ ∑
k, S

μkSδmkS + pWδνW − ℌ−ℌWð ÞδT ð3Þ

Clearly, the key variable relatives to chemical effects are mass changes.
Depending on the process it is necessary/convenient to identify a reversible part of
the change of mkS

el (mainly in close systems), or not, which means to say that all
mass changes are irreversible (mainly in open systems). In the former case, ignoring
temperature changes and the effect of fluid volume change, the elastic part of free
energy of the reactive solid expressed via the effective stress, σ’ and employing
Legendre transform, ΨM

el, becomes

δΨel
M = εelδσ′− ∑

k, S
μk, Sm

el
kS; σ′= σ − pI; εel =

∂ΨM

∂σ′
; ð4Þ

Hence, the chemo elasticity relationships take the form (in vector notation)

εel = − β mel
kS

� �
mel

kS + κ mel
kS

� �
ln

p′

po

� �
I
3
+

s
2Gðmel

kSÞ
ð5Þ

where s is the stress deviator, while G is the shear modulus, κ is a bulk modulus and
β is the coefficient of chemical expansion. Thus, the primary task is to identify
which of the species when changing mass affect most the material moduli, and
strength and what is the relationship between the variable. On the other hand
constitutive laws need to be established for rates of mass change individual min-
erals or ions, ṁel

kS. As for the chemical reactions, most of the rates are well known
from rate constants determined for specific reactions. However, additional coupling
may arise in the case for instance of the variable specific surface areas, for example
as in dissolution from a micro-cracking rock. One such case will be discussed
below.

Equally, if not more important is the description of the effects of chemical
reactions, thermal and physical processes on the irreversible straining and failure of
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geomaterials. The main focus is on irreversible chemo-plastic strain and the
accumulated mass removal (isothermal) effect on the material strength as framed
within the second thermodynamic law leading to a bound on dissipation function

Ḋ= σ′ε ̇irr + ∑
k, S

μkSṁ
irr
kS ≥ 0 ð6Þ

One possible set of constitutive equations is as spelled below:

δεirr = δΛ
∂f
∂σ′

; f = f σ′, p′c,M
� �

=0; p′c = p′c εirrv ,
Z

ṁirr
kS dt

� �
;M =M

Z
ṁirr

kS

� �
ð7Þ

which imply the fulfillment of the yield condition, f =0, but the “size” of which, p′c
depends on the accumulated mass removed, as does ratio of its semi-axes, or aspect
ratio, M. Experience suggests that both the yield locus characteristics, but most of
all the chemical dependence are both geo-material, as well as geochemical process
specific.

4 Degradation of Coastal Calcarenite Subject
to Water Inundation

Large segments of marine coasts in Southern Europe and elsewhere are formed of
calcarenite, which is notoriously prone to degradation and to rock falls causing
extensive damage and endangering human life and wellbeing. Calcarenite is more
than 90% carbonate rock. When exposed to water it may lose instantly up to 60% of
its dry strength, Fig. 1 (short-term effect) [4]. On the other hand, when continuously
saturated, calcarenite weakens due to the dissolution of the grains and bonds over
the long-term with a much lower rate [5]. It is known that strength of carbonate
rocks depends on its volume fraction filled with calcite [6].

The short-term loss and regain of strength is seen as a result of suspension and
re-sedimentation of solid mineral into and from the fluid [4]. It is a reversible
process for a small number of wetting-drying cycles in a closed system [7].
However, for a larger number of cycles the dry strength may not be fully recovered,
while the strength in wet conditions remains about the same over short-term [8].
The long-term changes are seen as irreversible. In open systems, specific transport
conditions play a crucial role.

On the micro-scale the current findings are: (i) Grains and bonds in the solid
structure are formed of calcite microcrystals of 5 μm; (ii) about 50% of the pore
volume are macro-pores 25–250 μ ca, while the rest are micro-pores
(25 < r < 0.01 μ); (iii) Two distinct types of bonds, strong and weak, are observed
in SEM. The strong bonds are bridges of calcite formed in a diagenetic process,
while the weak bonds are formed by a mixture of the calcite “powder” and sea
water salts that settle into a meniscus during evaporation; it is re-suspended when
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water refills the pores [9]; (iv) the chemical composition of the calcarenite of
concern is: 98% CaCO3 and some traces of Al and Mg); (v) 99% of the porosity of
calcarenite is connected; (vi) the initial specific surface area results to be 2.7 m2/g.

In what follows, we concentrate on the long-term interaction of calcarenite with
water. The material is considered as continuously saturated and drained. The main
component of calcarenite, calcite (CaCO3) dissolves in water diminishing the
dimensions of bonds and grains (and increasing the porosity), hence reducing the
material strength at the macro-scale [7]. A meso-scale scenario centers around a
meso-pore surrounded by deformable rock matrix with water penetrating radially
from the fluid-rock inter-face and effecting dissolution of the mineral. If the material
is stressed at yielding, the developing irreversible micro-cracks induce an increase
in the specific surface area. As the reaction rate per volume of fluid is proportional

Fig. 1 Tests on wetted calcarenite: a uniaxial compression on dry (Cd1&2), wetted (Cw1&2) and
acidified (Cw-d1&2)-from Ciantia et al. 2014; b Oedometer test with saturation of 0, 1, 2 and 4 h
—from Ciantia and Hueckel [4]
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to the surface area at the fluid/solid interface [10], it follows that the rate is coupled
to the amount of the mechanical damage. The formulation for dissolution and
specific surface area increase is developed at the micro-scale whereas the phe-
nomena of damage described above are formulated at a meso-scale level of a pore.
Finally, quantities from these two scales are re-calibrated to the macro-scale, at
which continuum mechanics constitutive models are formulated.

The rate equations are different for basic and acidic environment, after Sjöberg
[10]. In acidic conditions it depends on pH of the fluid alone [11].

ξ ̇= − kbA*Mm C− Ca2+
� �1 ̸2

CO2−
3

� �1 ̸2
n o

for 7.5 < pH<14

ξ ̇= − kaA*Mm H +½ � for 4< pH<7.5
ð8Þ

where 0 < ξ < 1 is the reaction progress, and its time derivative is the reaction rate
(denoted by superposed dot), ka and kb are reaction constants for acid or base,
whereas the reacting surface area A* is calculated per unit volume of reacting fluid,
Mm is the molar mass of calcium carbonate, and the quantities in brackets denote
concentrations of respective species. Following Hu and Hueckel [12] the variable
surface area, which includes that of generated micro-cracks is linked to the variable
of dilatant volumetric irreversible strain, εirrv <0, however when the latter are
compactant, the reactive surface area is assumed as remaining constant. Hence,

A* = f ðεirrv Þ= A*
0ð1+ϕ εirrv

�� ��Þ if εirrv < 0
A*
0 if εirrv ≥ 0

	
ð9Þ

where ϕ is a constant, while A0
* is effective surface area of pre-existing voids.

To describe the water sensitivity of strength for calcarenite, the simplest approach
is through rigid hardening plasticity with chemical softening. A linearized plane
stress yield locus, in terms of radial and circumferential stress components reads

f =

1
2 σϑ − σrð Þ− α

2 σr + σϑð Þ− 1+ γεirrv − δξ
� �tanφ1 − tanϑ1

tanϑ1 + 1 σ*01 = 0 ; σϑ ≥ σrtanφ1

1
2 σr − σϑð Þ− α

2 σr + σϑð Þ− 1+ γεirrv − δξ
� �tanϑ2 − tanφ2

tanϑ2 + 1 σ*02 = 0 ; σϑ ≤ σrtanφ2

σr − σ*02 1 + γεirrv − δξ
� �

=0 ; σrtanφ2 ≤ σϑ ≤ σr

σϑ − σ*02 1 + γεirrv − δξ
� �

=0 ; σr
tanφ1

≤ σr ≤ σϑ

8>>>>>>>><
>>>>>>>>:

ð10Þ

where α, δ, γ, ϑi, φi are all constants.
With the restriction that despite the chemical softening, the positive strain

hardening function, h is always dominant

h=1+ γεirrv δξ>0 ð11Þ
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The associated flow rule is adopted, and as a result there is an irreversible
chemo-plastic strain rate component [12–14].

We employ these constitutive laws to consider a meso-scale representative
elementary volume (REV) of a single, plane strain, axisymmetrical pore between
four bonded grains and under a constant external isotropic compression, and
chemical degradation.

The solution for such pore features three zones: dilatant, critical and compactant,
evolving as the chemical reaction progresses at constant external radial stress at B,
Fig. 2. Eventually as the critical zone CD disappears, the solution ceases to exists,
which is interpreted as a chemically induced instability; for details see Ciantia and
Hueckel [4].

The meso-scale behavior has been up-scaled, using a periodic representation and
a macroscopic chemo-plasticity. The macroscopic prediction of reaction progress
and degradation of the yield limit over a year is shown against the experimental
results in Figs. 3 and 4. Such a tool can be used for resilience assessment for coastal
structures.

5 Degradation of Geomaterials via Drying-Cracking

Drying of soils contributes to (often critical) degradation of earth structures such as
levees, dykes, earth dams, clay liners, clay buffers and backfills in nuclear waste
disposal. Sometimes, drying is enhanced by a simultaneous heating. Drying and
cracking of soils and like materials appear to develop following an involved sce-
nario, which consists of several phases: (i) shrinkage of the solid upon evaporation
induced suction, or total tensile stress build up, if the soil is constrained against
displacement. Effective stress in the presence of high suction and low total tensile
stress results to be compressive; (ii) air entry when the water-air interface undergoes
instability; (iii) total tensile stress concentration at the tip of the air entry finger;
(iv) development of tensile crack, as due to stress magnification, the latter becomes
larger than suction, and the effective stress becomes tensile. Peron et al. [15]
observed in MPS that first to dry are the larger pores, which consistently become
smaller contributing to the macroscopic shrinkage of soil. The larger pores closure
and practically soil shrinkage cease, simultaneously with the air entry. However, the
smaller pores continue to evaporate, but their contribution to shrinkage is minor.

Modeling of the above phenomena requires considerations at several scales. Hu
et al. [16, 17] simulated evaporation from a porous system seen as a bunch of
parallel deformable tubes of two sizes, including a moment of air entry, point a for
large pores, and point b for smaller pore, shown in Fig. 5a. Air entry occurs at a
point when a decreasing meniscus radius becomes smaller than the largest pore
throat radius, the latter depending on deformability of the vessels, reaching a critical
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pressure difference between fluid, p, and atmosphere, pa. It was observed that air
entry occurs within 1/1000 of a sec producing a well-articulated singularity of the
external surface, Fig. 5.

Fig. 2 Stress components (a) and external displacement (b and c) as functions of reaction
progress. In (b) and (c), segment AA’ visualizes a response along an actual path ub/b versus
dissolved mass. Segment A’B, shows an unstable response to an arbitrary path δt > 0 from A’. (see
Ciantia and Hueckel [4] for detailed explanations)
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We postulate that at the tip of that singularity, a feeble total tensile stress induced
by a constrained shrinkage becomes amplified by an order of magnitude, and
changes the sign of compressive effective stress to tensile and its value easily
becomes larger than tensile strength. Using the principles of linear fracture
mechanics, the stress at the external boundary of the tubes, which are placed near

Fig. 3 Micro- and macro-scale medium, (a) and (b)

Fig. 4 Reaction progress in time (a)—results for a limestone and tuff are shown for comparison,
Degradation of yield limit size, pc’ (b and c)
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the flaw tip, with the curvature radius of rc can be calculated as the far-field
(macro-scale) stress at crack initiation as (stress is positive in tension)

σx =
KI crit + 1

2 p
ffiffiffiffiffiffiffi
πrc

p
B

ffiffiffiffiffi
πc

p ð12Þ

where KI crit is the critical stress intensity factor, c is the depth of the flaw, B is a
constant equal to 1.12 and p is the fluid pressure inside of the pore [18]. Once a
crack is generated at a most stressed air entry point, it propagates further at a modest
speed controlled by the rate of continuous evaporation (for details see Hueckel et al.
[19]. The critical time to cracking depends on the water advection to the interface
with the atmosphere to generate the suction required to trigger the air entry.

Fig. 5 a Simulated soil-water characteristic curve obtained via pressure weighing procedure for
the systems of the two modes of vessels versus Degree of Saturation; b air entry into a set of glass
spheres immersed in water
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6 Conclusions

Outline of modeling is presented for degradation of geomaterials due to time
dependent chemical or physical processes [20]. Further progress in such modeling
is necessary to provide tools to assessment of resilience of geomaterials and earth
structures. The time dependence of chemical softening is inherited from the char-
acteristic rates of reactions, and that of drying cracking from advective transport
through deformable porous skeleton. The above findings require a thorough
experimental verification.
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Cyclic Elastoplastic Constitutive Model
for Soils Based on Non-linear Kinematical
Hardening Rule with Volumetric
and Deviatoric Kinematical Parameters

Fusao Oka and Sayuri Kimoto

Abstract The aim of this paper is to present cyclic constitutive models for sandy
and clayey soils based on the kinematical hardening rule with the strain-
degradation, and the applicability of the models to the practically important prob-
lem such as the of the levee during earthquakes. For sandy soils, we have been
developed a cyclic elasto-plastic model based on the kinematical hardening rule
with two yield surfaces for the change of the stress ratio and the mean effective
stress considering the degradation of the yield surface. From the simulation by the
present model, we have found the strong non-associativity leads to the large
decrease in the mean effective stress during the cyclic deformations under
undrained conditions while the model with associated flow rule is not. This result is
quite important because the mean effective stress becomes almost zero at the full
liquefaction state. We have found that the model can well reproduce the cyclic
behavior of soil.

1 Introduction

In the present model, firstly, we have developed a new cyclic model using a single
kinematical hardening yield surface for both the change in the stress ratio and the
mean effective stress based on the cyclic model. Then in order to take account of the
non-associativity that comes from the friction of soils, we have introduced a
non-associativity parameter [1]. The proposed model is based on the
non-associative flow rule including the associative one. The model is derived based
on the non-linear kinematical hardening rule which is advocated by Armstrong and
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Frederick [2] with two hardening parameters for both the volumetric and deviatoric
strains. From the simulation, we have found the strong non-associativity leads to the
large decrease, i.e. almost zero in the mean effective stress during the cyclic
deformations under undrained conditions.

2 Cyclic Elastoplastic Constitutive Model

Kimoto et al. [3] proposed an elasto-plastic cyclic model for sandy soils based on
the non-linear kinematical hardening rule. The model includes two yield surfaces;
one is for the change of stress ratio and the other is for the change of the mean
effective stress. In the present model, we have proposed a single yield function for
the change in the stress ratio and the mean effective stress.

2.1 Total Strain Increments

The total strain rates decomposes into elastic and plastic ones dεEij and dεPij as:

dεij = dεEij + dεPij ð1Þ

The strain dependency of the elastic shear modulus is given by

GE =
GE

0

1 + αeðγP*ap ̸γE*r Þre1
σm′

σm0′

� �re2

ð2Þ

where re1, re2, αe are material parameters, GE
0 is the initial value of GE, γP*ap is the

accumulated plastic deviatoric strain increment after the stress ratio reaches M*
m and

γE*r is a referential strain.
The elastic volumetric modulus is given by the similar manner as Eq. (2) while

the initial one is given by the swelling index κ.

2.2 Overconsolidation Surface

We use an overconsolidation surface for defining the boundary between the nor-
mally consolidated region ( fb ≥ 0)and overconsolidated region ( fb <0)in the stress
space, which is given by
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fb = η̄*ð0Þ +M*
m ln

σ′m
σ′mb

� �
=0, η̄*ð0Þ = η*ij − η*ijð0Þ

� �
η*ij − η*ijð0Þ
� �n o1 ̸2

, η*ij = sij ̸σ′m

ð3Þ

where σ′m is the mean effective stress, sij is the deviatoric stress tensor, M*
m is the

stress ratio η* = ðηijηijÞ1 ̸2 at the critical state which is called the stress at the phase
change (maximum compression), η*ijð0Þ is the value of η*ij after the end of consoli-

dation, σ′mb is the parameter depending on the plastic volume strain.
For the soil that exhibits the strong structural change, σ′mb may change due to the

change of the plastic shear strain as well as the plastic volumetric plastic strain. We
can describe the strain softening induced by the plastic strain by the decrease of σ′mb as:

σ′mb = σ′mbf + σ′mbi − σ′mbf

� �
exp − βzð Þ

n o
exp

1+ e0
λ− κ

vp
� �

, z=
Z

dz=
Z

dεpijdε
p
ij

� �1 ̸2

ð4Þ

where σ′mbf is the final vale of σ
′

mbi, β is a parameter of the rate of its reduction, σ′mbi
is the initial value of σ′mb, σ

′

m0 is the initial value of mean effective stress e is the
void ratio, λ is the compression index, κ is the swelling index and vP is the plastic
volumetric strain. In general, σ′mbi of the isotropic consolidated soil corresponds to
the preconsolidation stress σ′m0. Since, for sand, it depends on the structural ani-
sotropy and the compaction and aging etc., σ′mbi does not necessary coincides with
σ′m0. Hence, σ

′

mbi can be determined by the characteristics of volumetric strain and
the quasi-overconsolidation ratio OCR*ð= σ′mbi ̸σ′m0Þ is defined.

2.3 Yield Surface

The yield function is assumed to be a non-linear function of the kinematical
hardening parameters of the stress ratio and the mean effective stress, and is given
by

fy = η ̄*χ +CnsM̃
*

ln
σ′mk
σ′ma

+ ln
σ′m
σ′mk

− y*m

����
����

� �
=0 ð5Þ

η̄*χ = η*ij − χ*ij

� �
η*ij − χ*ij

� �n o1 ̸2
ð6Þ

where σ′mk is the unit of the stress, y*m and zm are the kinematical hardening
parameters for the change of the mean effective stress and σ′ma is a parameter for the
structural change, χ*ij is the nonlinear kinematical hardening for the stress ratio
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change. In the present paper, the unite of the stress is kiropascal (kPa). The
parameter Cns is controlling the non-associativity which is less than 1.0; Cns =1.0
for the associative flow rule and Cns <1.0 for non-associative flow rule. In the
present model, we assume Cns =1.0 before the states reaches the phase transfor-
mation line and Cns <1.0 after the states reaches the phase transformation line.

χ*ij has a dimension of η*ij and is called back stress. The nonlinear hardening rule,
an evolutional equation of χ*ij is given by

dχ*ij =B* A*dePij − χ*ijdγ
P*

� �
ð7Þ

where A* and B* are the material parameters and relates to the stress ratio at failure
M*

f and the non-dimensional initial plastic shear modulus GP as:

A* =M*
f , B* =

GP

M*
f

ð8Þ

In addition, B* follows the evolutional law as:

dB* =Cf B*
1 −B*� �

dγP* ð9Þ

where Cf and B*
1 are material parameters. The another law can be used with a

referential strain γP*r as:

B* =B*
0 ̸ð1+ γP*ap ̸γP*r Þ ð10Þ

The softening due to the internal structural change can be described by the same
equation as for the overconsolidation surface and is given by

σ′ma =
σ′mbf + σ′mbi − σ′mbf

� �
exp − βzð Þ

n o
σ′mbi

σ′mai ð11Þ

where σ′mai coincides with the initial mean effective stress. For the kinematical
hardening associated with the change of the mean effective stress is given by

y*m = y*m1 + y*m2 ð12Þ

dy*m1 =B*
2 A*

2dε
p
v − y*m1 dεpv

�� ��� � ð13Þ

dy*m2 =B*
3dε

p
v ð14Þ
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2.4 Plastic Potential Function

The plastic potential function is given by

g= η̄*χ + M̃
*

ln
σ′mk
σ′mp

+ ln
σ′m
σ′mk

− y*m

����
����

 !
=0 ð15Þ

where σ′mp is a constant and M̃
*
is given by

M̃
*
=

M*
m fb ≥ 0 ðNormally consolidated regionÞ
σ*m ̸σ′mb
� �n2M*

m fb <0 ðOverconsolidated regionÞ
	

ð16Þ

where n2 is a material parameter. σ*m the value of the mean effective stress at the
intersection point between the surface passing through the present stress point

which is similar to the overconsolidation surface and the anisotropic stress axis. M̃
*

which controls the direction of the plastic strain increment depends on the stress
state and is smaller than the stress ratio at the phase transformation M*

m.

M̃
*
=AcmM*

m after M̃
*
reaches M*

m.
In the present model, we use the following generalized flow rule including 4th

order tensor Hijkl [3] to more precisely reproduce the dilatancy characteristics.

dεPij =Hijkl
∂g
∂σ′kl

, Hijkl = aδijδkl + bðδikδjl + δilδjkÞ ð17Þ

where a, b are material parameters depending on the stress and strain.
The stress-dilatancy relationship is given by

dvP

dγP*
=D* M̃

* − η*χ

� �
, D* =

3a
2b

+1 ð18Þ

where D* is a so-called dilatancy coefficient and controls the plastic volumetric
strain associated with the shearing. In the case of a=0, the relationship corresponds
to the conventional one. D* is given by

D* =D*
0
ðM̃* ̸M*

m
Þn ð19Þ

where D*
0, n are material parameters.
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3 Simulation Results

In order to show the applicability of the present model, the response of the loose
Toyoura sand under the undrained simple shear conditions. The material parameters
used in the simulations are as follows:

e0 = 0.772, λ=0.0091, κ=0.0052, OCR* = 1.0, GE
0 ̸σ′m0 = 1023.6, M*

f =0.99,
M*

m =0.707, B*
0 = 40889.0, B*

1 = 54.5, Cf =0.0, γP*r =0.002, γE*r =0.012, re2 = 1.0,
αe =1.0, re1 = 1.0, D*

0 = 0.85, n=5.1, Cd =2000.0, β=0.0, n2 = 0.5 σ′mbf ̸σ′mbi =1.0,
A*
2, B

*
2 = 0.0, 0.0, B*

3 = 1+ e0ð Þ ̸ λ− κð Þ=204.4, Acm =1.0, Cns =0.01

Equation (12) was used for the calculation. Figure 1 shows calculated results
well reproduce experimental results.

(a) Calculated results

(b) Experimental results

Fig. 1 Stress path and stress-strain relation
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4 Conclusions

Cyclic elasto-plastic constitutive models have been developed based on the kine-
matical hardening theory which includes two kinematical hardening parameters for
volumetric and shear strains. We have introduced non-associativity parameter that
controls the non-associative behavior of sandy soil which is important for the
simulation of instable behavior such as liquefaction [4]. Numerical simulation
shows the model can well reproduce the cyclic behavior of soils. In the future, we
will present the parametric study and the application of this model to the boundary
value problem including instability problem such as liquefaction.
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Theoretical Prediction of Strain
Localization in Anisotropic Sand
by Non-coaxial Elasto-Plasticity

Maosong Huang, Zhouquan Chen, Xilin Lu and Xiaoqiang Gu

Abstract Due to the interaction of stress state and soil micro-structure, the onset of
strain localization in anisotropic sand is different from that in isotropic sand. In
order to accurately predict the onset of strain localization in inherent anisotropic
sands under multi-dimensional stress condition, a state-dependent critical state
constitutive model was proposed. The anisotropic critical state line was modified by
incorporating micro-structure information, termed as fabric anisotropy. The model
was shown to be able to capture influences of loading direction and intermediate
principal stress ratio on stress-strain relationships and volumetric characteristics.
Through the integration of the rate-form stress-strain relationship, bifurcation
analysis was employed to predict the onset of strain tests. The results showed that
the major principal strain at the bifurcation points increases with the deposition
angle, while the stress ratio decreases with the angle varying from 0° to around 60°
and increases afterwards in plain strain tests. Overall, the predicted shear stress at
bifurcation points compare well with the stress peak in experiments.

Keywords Theoretical prediction ⋅ Strain localization ⋅ Anisotropic sands ⋅
Noncoaxial plasticity ⋅ Fabric anisotropy

1 Introduction

In the bifurcation analysis proposed by Rudnicki and Rice [1], the influence of
anisotropy of materials on the strain localization was not taken into account suffi-
ciently. The previous works mainly focused on the isotropic constitutive model and
the improvement of the theory which leaded to a non-coaxial plastic flow rule.
Based on the extended form of this theory in the 3D stress space by Qian et al. [2],
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an anisotropic generalized Mohr-Coulomb model accounting for the microstructure
characteristics of granular materials was introduced to predict the strain localization
of cross-anisotropic sand [3]. However, there was also an anisotropic model con-
sidering state-dependence which derived from the original works by Li and Dafalias
[4], and no attempt was made to apply this model to the bifurcation analysis. An
important concept was encompassed in this models, which is termed as the ani-
sotropic critical state lines (ACSL). This concept refers to a scale-valued anisotropic
state variable A, which is defined as the first joint isotropic invariant of the fabric
tensor and a properly defined loading direction tensor. And the location of the
critical state line (CSL) in the void ratio e versus mean effective stress p space is
argued to be strongly affected by the anisotropic state variable A. Based on the
anisotropic model, this paper intends to modify the constitutive model by Li and
Dafalias [4] by revising the function forms of ACSL and developed a corresponding
non-coaxial model to predict the onset of shear bands with comparison to plane
strain tests on Toyoura sands further.

2 Anisotropic State Variable and Critical State Line

In the constitutive model developed by Li and Dafalias [4], the anisotropy of sand
mainly depends on the anisotropic state variable A. The variable is related with all
key aspects of the model, such as the location of CSL, the forms of plastic modulus
and the dilatancy function, etc. And the fabric tensors which characterize the micro
structure of granular material can be defined as

F′

ij =
1

3+Δ

1−Δ 0 0
0 1+Δ 0
0 0 1+Δ

2
4

3
5 ð1Þ

where Δ is the vector magnitude proposed by Curray [5], which indicates the
magnitude of the anisotropy of the preferred orientation of the particles.

The loading direction tensor is another component of the anisotropic state
variable A, which is characterized by the normalized stress σ îj and expressed as

σ îj =
McgðθÞ

R
rij + δij ð2Þ

where Mc is the critical stress ratio under triaxial compression. Then, the tensor rij is
defined as rij = sij ̸p, and R=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3rijrji ̸2

p
, is the second invariant of rij. In addition,

the lode angle θ is defined as θ= − ½sin− 1ð9rijrjkrki ̸2R3Þ� ̸3.
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The interaction between the fabric anisotropy and the loading direction can be

characterized by the new stress tensor T
⌢

ij, which is formulated by

T
⌢

ij =
1
6
ðσ⌢ikF − 1

kj +F − 1
ik σ

⌢
kjÞ= p⌢ðr⌢ij + δijÞ ð3Þ

where F − 1
ij is the inverse of the fabric tensor Fij. p

⌢=T
⌢

ii ̸3 is the mean stress,

r⌢ij = s⌢ij ̸p
⌢ is the ratio of deviatoric stress. The related second and third invariants

can be expressed as R
⌢

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3r⌢ij r

⌢
ji ̸2

q
and θ

⌢

= − ½sin− 1ð9r⌢ij r
⌢
jk r

⌢
ki ̸2R

⌢3
Þ� ̸3, respec-

tively. With combination of two invariants, the anisotropic state variable can be
redefined as

A=
R
⌢

Mcgðθ
⌢Þ

−
R
⌢

Mcgðθ
⌢Þ

 !
c

ð4Þ

where R
⌢

̸ðMcgðθ
⌢ÞÞ can be regarded as a function corresponding to the vector

magnitude Δ, the lode angle θ, and the angle α which is defined as an inclination

between the deposition direction and the loading direction. The term ðR⌢ ̸ðMcgðθ
⌢ÞÞÞc

is the function value under triaxial compression, which is a constant and do not vary
with the loading condition.

The basic assumption of ACSL, which was proposed in the critical state model
of sand accounting for the inherent anisotropy [4], is that the CSL in the e-p plane
depends on the loading conditions and the fabric anisotropy. The experimental
work of Yang et al. [6], to some extents, establish the correlation between the
inherent fabric anisotropy and the CSL. According to this method, the concept of
ACSL can be verified. Hence, a revised form of ACSL is defined as

ec = eΓðAÞ− λcðp ̸paÞζ = eΓ0 + kΓA exp
b

b+ c
sinð2αÞ

� �
− λcðp ̸paÞξ ð5Þ

where eΓ0, kΓ, c, λc and ξ are material constants, eΓ0 is the critical-state void ratio for
triaxial compression at intercept p = 0, pa is a reference pressure (101 kPa). The
influence of A on CSL is governed by the function eΓðAÞ, which determine the
location of CSL. The location of the revised ACSL is mainly affected by the term
A exp½ b

b+ c sinð2αÞ� and its variation of various intermediate stress ratio b with α is
shown in Fig. 1.
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3 Non-coaxial Anisotropic Model and Bifurcation
Prediction

According to the yield vertex theory by Rudnicki and Rice [1], the total plastic
strain increment dε pij can be composed into the coaxial term dε pcij and non-coaxial
term dε pnij , that is

dε pij = dε pcij + dε pnij ð6Þ

Combination of the stress-strain relationship including the non-coaxial strain
increment and the consistency condition of the yield function, the elasto-plastic
modulus matrix always can be formulated as follows [3]

Dep
ijkl =De

ijkl −De
ijmn

∂Q
∂σmn

∂f
∂σst

Hp +
∂f
∂σpq

De
pquv

∂f
∂σuv

+
Ht

Ht +2G
Cnp
mnst

 !
De

stkl ð7Þ

where De
ijmn is the elastic modulus matrix, Hp is the hardening modulus and Cnp

ijkl is
the non-coaxial term

Cnp
ijkl =

1
Ht

δikδjl + δilδjk
2

−
δklδij
δmnδmn

−
sijskl
2J2

−
SijSkl
SmnSmn

� �
ð8Þ

In Eq. (7), the yield function f and the plastic potential function Q are given as
respectively

0 30 60 90
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-0.6
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-0.4
-0.3
-0.2
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0.0
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c=0.05A

ex
p[

b/
(c

+b
)s

in
(2

)]

(degree)

Triaxial compression

b=0

b=0.25

b=0.5
b=0.75

b=1

Fig. 1 Variation of
A exp b

b+ c sinð2αÞ
� �

with α
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f = q−MgðθÞp=0 ð9Þ

Q= q+
B

1−B
MdpgðθÞ½1− ð p

po
ÞB− 1�=0 ð10Þ

where M is the stress ratio in triaxial compression, d0 is a model parameter, and
Md =Mcemψ is the phase transformation stress ratio, ψ = e− ec is a state parameter
proposed by Been and Jefferies [7], m is a model parameter. B= d0 ̸Mcs and po is
the size parameter of the potential surface.

In this study, the hardening rule is determined by the incremental equation

dε ps =
pM

hGðMcse− nψ −MÞ dM ð11Þ

where εps =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2epij e

p
ij ̸3

q
and e pij = ε pij − δijε

p
ij ̸3. The constant n is a model parameter

and h is related to the anisotropic state variable, defined as

h= ðh1 − h2eÞð1+ khAÞ ð12Þ

where e is the void ratio, and h1, h2 and kh are model parameters.
According to the bifurcation theory, the condition for the onset of strain local-

ization in the small strain condition is

detðAikÞ= det njD
ep
ijklnl −

1
2
ðσik + σjknjni − σijnjnk − σjlδiknjnlÞ

� �
=0 ð13Þ

where Aik is referred to as the acoustic tensor; ni is the unit vector normal to the
shear band; and Dep

ijkl is elasto-plastic modulus tensor. More details about the process
can refer to these previous works, such as Huang et al. [8].

4 Results and Discussion

A series of drained plane strain tests were performed with different deposition angle
α by Oda et al. [9]. And the experimental data is employed to compare with the
prediction results of strain localization based on the revised anisotropic critical state
model. The model parameters in simulations are shown in Table 1 and mostly refer
to those by Yang et al. [6].

Figure 2 shows the stress-strain relationships for e = 0.67 at a confining pres-
sure σ3 = 2.0 kg ̸cm2 (1 kg/cm2 = 98.1 kPa) when α = 0°, 30°, 45°, 60° and 90°,
as well as the predicted results in bifurcation analysis. On the one hand, the sim-
ulation results can demonstrate the ability of the model to describe the character-
istics of anisotropic behavior reasonably. On the other hand, the onsets of shear

Theoretical Prediction of Strain Localization … 93



www.manaraa.com

0 1 2 3 4 5 6 7 8
0

3

6

9

12

15

e=0.67
confining pressure
 p=392 kg/cm2

σ 1−
σ 3 (

kg
/c

m
2 )

ε1(%)

test(α=00)
test(α=300)
test(α=450)
test(α=600)
test(α=900)
simulation(α=00)
simulation(α=300)
simulation(α=450)
simulation(α=600)
simulation(α=900)

(Oda et al., 1978)

0 2 4 6
0

3

6

9

12

15

α=0ο

σ 1
−σ

3 (
kg

/c
m

2 )

ε1(%)

test(Oda et al, 1978)
coaxial point
non-coaxial point
simulation

0 2 4 6
0

3

6

9

12

15

α=30ο

σ 1
−σ

3 (
kg

/c
m

2 )

ε1(%)

test(Oda et al, 1978)
coaxial point
non-coaxial point
simulation

0 2 4 6
0

3

6

9

12

15

α=45ο

σ 1
−σ

3 (
kg

/c
m

2 )

ε1(%)

test(Oda et al, 1978)
coaxial point
non-coaxial point
simulation

0 2 4 6
0

3

6

9

12

15

α=60ο

σ 1
−σ

3 (
kg

/c
m

2 )

ε1(%)

test(Oda et al, 1978)
coaxial point
non-coaxial point
simulation

0 2 4 6
0

3

6

9

12

15

α=90ο

σ 1
−σ

3 (
kg

/c
m

2 )

ε1(%)

test(Oda et al, 1978)
coaxial point
non-coaxial point
simulation

Fig. 2 Stress-strain relationships and bifurcation point in plane strain tests

Table 1 Model parameters for Toyoura sand

Elastic
parameters

Critical state
parameters

Dilatancy
parameters

Hardening
parameters

Anisotropic
parameters

Non-coaxiality
parameters

G0 = 80 Mcs =1.38 d0 = 0.68 h1 = 3.15 Δ=0.26 Ht =8500 kPa
v=0.25 K =0.75 m=3.5 h2 = 3.05 c=0.05

eΓ0 = 0.934 n=1.35
λc =0.019 kh =0.5
ξ=0.7
kΓ =0.15
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band are both predicted by the coaxial and non-coaxial model. It can be seen from
the figures that the predicted peak stress ratio is underestimated based on coaxial
model and that based on non-coaxial model can agree well with the test data.

5 Conclusions

The failure point predicted by the bifurcation analysis was markedly affected by the
peak strength of the constitutive model. In the anisotropic critical state model, the
peak strength is dependent on the state parameters. Since the variation of state
parameter ψ with α is determined by the anisotropic critical state line function, the
peak strength inherit the trend as the same as that of ψ altered by the modified
function, in which the stress ratio descend with deposition angle ranging from 0° to
around 60° and ascend afterwards. Thus, the prediction of the strain localization
also shows the same trend and is consistent with the tests results.
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Modeling Sand Behavior Under Partially
Drained Stress Paths

M.S. Yaghtin and A. Lashkari

Abstract Soil behavior is conventionally studied under fully drained or undrained
conditions. However, general drainage with complete control on both pore volume
and pore water pressure leads to a wide spectrum of behaviors which may not be
delimited by drained and undrained ones. Herein, a critical state bounding surface
plasticity model is employed to simulate partially drained behavior of sand samples
sheared over a wide domain of drainage conditions. Using the concept of loss of
uniqueness, onset of instability under partial drainage is studied.

1 Introduction

In the laboratory, undrained triaxial and direct simple shear tests have been applied
to study the liquefaction of sands. Traditionally, it is assumed that behavior of
saturated sands is bounded by those of undrained and fully drained tests, and
behavior during and soon after earthquake is essentially undrained. However,
results of shaking table tests have revealed that some volume changes during
earthquakes are inevitable due to high permeability of sands. Depending on drai-
nage condition, five potential responses for loose sands are schematically illustrated
in Fig. 1. Type 1 is fully drained behavior in which excess pore water pressure is
zero and total and effective stresses are equal. Drainage is prohibited and soil
volume is kept fixed in the undrained response (i.e., type 2 of behavior). Types 3 to
5 are technically called partially drained behaviors in which soil shears with
simultaneous changes in pore volume and pore water pressure. Soil behavior is
bounded by drained and undrained ones in type 3. Nevertheless, soil load bearing
structure excessively weakens in type 4, and gradually strengthens in type 5 of the
behavior.
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A plasticity model is employed to simulate the behavior of sand under general
drainage. Using the concept of loss of uniqueness, onset of instability is predicted.

2 Constitutive Model

Golchin and Lashkari [6] and Lashkari and Golchin [7] put forward a sand model
with elastic-plastic coupling in which, elastic strains are obtained from energy
function to conserve energy in closed loop elastic stress paths. Coupling of elas-
ticity and plasticity enables the model to consider evolving anisotropic elastic
moduli. Explicit form of the model constitutive equations in triaxial space is:

p ̇
q ̇

� �
=

Dpp Dpq

Dqp Dqq

� �
ε̇v
ε̇q

� �
ð1Þ

where p ½= ðσ′a + 2σ′rÞ ̸3� and q ½= σ′a − σ′r� are, respectively, mean principal effec-
tive stress and shear stress in which σ′a and σ′r are axial and radial effective stresses.
εv ½= εa + 2εr� and εq ½=2 ̸3ðεa − εrÞ� are volumetric and shear strains where εa and
εr are axial and radial strains. Dpp, Dpq, Dqp, and Dqq are calculated from:

Dpp =K−
1+Γ, qχ χ, α Kp

pKp + ð1+Γ, qχχ, αKpÞ ½3G− Jη+ ðJ−KηÞd�

" #
ðJ +KdÞðJ−KηÞ ð2aÞ

Dpq = J−
1+Γ, qχ χ, α Kp

pKp + ð1+Γ, qχχ, αKpÞ ½3G− Jη+ ðJ−KηÞd�

" #
ðJ +KdÞð3G− JηÞ ð2bÞ

Dqp = J−
1+Γ, qχ χ, α Kp

pKp + ð1+Γ, qχχ, αKpÞ ½3G− Jη+ ðJ−KηÞd�

" #
ð3G+ JdÞðJ−KηÞ ð2cÞ

Dqq = 3G−
1+Γ, qχ χ, α Kp

pKp + ð1+Γ, qχχ, αKpÞ ½3G− Jη+ ðJ−KηÞd�

" #
ð3G+ JdÞð3G− JηÞ

ð2dÞ
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Fig. 1 Sand behavior as a function of drainage state: a stress path; b shear stress versus strain
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In Eqs. (2a)–(2d), Γ is the energy function of Einav and Puzrin [4]:

Γðp, q, χÞ= p2− χ − ð2− χÞp p1− χ
0

K ð2− χÞð1− χÞp1− χ
ref

+
q2

6G p1− χ
ref pχ

−
q0ð2q p0 − χq0 pÞ
6G p1− χ

ref p1+ χ
0

ð3Þ

where p0 and q0 are, respectively, p and q at zero elastic strains and pref (= 101 kPa)
is a reference pressure. K=K0 ðeg − eÞ2 ̸ð1+ eÞ and G=G0 ðeg − eÞ2 ̸ð1+ eÞ in
which K0 and G0 are soil parameters and eg = 2.97 is a reasonable assumption for
sands with angular particles. K, G, and J are, respectively, the elastic bulk, shear,
and shear-volumetric coupling moduli:

K=
Γ, qq

Γ, ppΓ, qq −Γ, pqΓ, qp
=

1

1− χðχ− 1Þ
2 η2 K

3G

� �Kpref
p
pref

� 	χ

ð4aÞ

G=
1 ̸3 Γ, pp

Γ, ppΓ, qq −Γ, pqΓ, qp
=

1

1− χðχ− 1Þ
2 η2 K

3G

� � G +
χðχ+1Þ

6
η2 K

� 	
pref

p
pref

� 	χ

ð4bÞ

J = −
Γ, pq

Γ, ppΓ, qq −Γ, pqΓ, qp
=

1

1− χðχ− 1Þ
2 η2 K

3G

� � χ ηK pref
p
pref

� 	χ

= χ ηK ð4cÞ

where Γ, pp = ∂
2Γ ̸∂p∂p, Γ, pq =Γ, qp = ∂

2Γ ̸∂p∂q and Γ, qq = ∂
2Γ ̸∂q∂q and η=q ̸p

is stress ratio. χ in Eqs. (3) and (4a)–(4c) varies through:

χ= χðαÞ= χmin +
ðχmax − χminÞ

1+B ðαb ̸α− 1Þ ð5Þ

where χmin = 0.45, χmax = 0.95 and B = 0.10 are practical estimations for various
sands (see [8]). In Eqs. (2a)–(2d), χ, α and Γ, qχ are the compact forms for ∂χ ̸∂α
and ∂

2Γ ̸∂q∂χ, respectively. Kp and d in Eqs. (2a)–(2d) are, respectively, plastic
hardening modulus and dilatancy function:

Kp = h0 expð− ch eÞ ⋅
αb − α
α− αin

pref
p

� 	1− χ

; d =A 2−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
< αd − α>
ð1+ cÞM

s" #
ðαd − αÞ

ð6Þ

where h0, ch and A are parameters and c = 0.70–0.75. α is back-stress ratio which
is linked to stress ratio through f = η− α−m=0 in triaxial compression wherein
m = 0.001 here. In Eq. (6), αb and αd are back-stress ratios associated with
bounding and dilatancy surfaces (see [3]):

Modeling Sand Behavior Under Partially Drained Stress Paths 99



www.manaraa.com

αb =M expð− nb ψÞ−m ; αd =M expðnd ψÞ−m ð7Þ

nb and nd are soil parameters, M is slope of critical state line in the q versus p plane
and ψ is state parameter:

ψ=e− ecs = e− ½e0 − λ p ̸prefð Þ ξ� ð8Þ

e0, λ and ξ are soil parameters and ecs is critical void ratio corresponding to the
current p.

3 Criterion of Instability Under Partial Drainage
Condition

Following the pioneering works of Borja [2] and Andrade et al. [1] based on
bifurcation theory, loss of uniqueness or stability in triaxial space requires:

p ̇½ �½ � ε̇v½ �½ �+ q ̇½ �½ � ε̇q
� �� �

=0 ð9Þ

where p ̇½ �½ �, q ̇½ �½ �, ε̇v½ �½ � and ε̇q
� �� �

are, respectively, jumps in p, q, εv and εq due to
duplicate solutions for velocity field. In partially drained tests, volumetric and axial
strain rates are linked through (see [5]):

ζ=
ε̇v
ε̇a

ð10Þ

Using Eq. (10) together with ordinary algebra, one has:

ε̇v =
ζ

1− ζ ̸3

� 	
ε̇q ð11Þ

Implementing Eqs. (1) and (11) in Eq. (9) gives the following criterion for loss
of uniqueness under partial drainage condition in triaxial tests:

ζ2 Dpp + ð1− ζ ̸3Þ2Dqq + ζð1− ζ ̸3Þ ðDpq +DqpÞ=0 ð12Þ

4 Simulation of Sand Behavior Under Different
Drainage Conditions

Fraser River sand, a uniform angular to sub-angular sand with low to medium
sphericity, is an alluvial deposit from Fraser River delta in British Columbia,
Canada [5]. Using the p model, behaviors of four Fraser River sand samples with
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different initial states under fully drained condition are simulated and predictions
are illustrated against corresponding experimental data in parts “a” and “b” of
Fig. 2. Applying identical parameters, behaviors of three loose Fraser River sand
samples sheared under undrained condition are simulated and drawn with experi-
mental data in parts “c” and “d” of Fig. 2. Model parameters in all simulations are
provided in Table 1. In Fig. 2, the model captured the general trend of sand
behavior associated with density, confining stress, and drainage condition and the
observed discrepancies may be attributed to uncertainty in critical state line of
Fraser River sand.

The behaviors of six Fraser River sand samples (ein = 0.808, pc = 200 kPa)
sheared under partially drained condition with ζ = + 1.0, +0.40, +0.20, 0.0, −0.10,
−0.40 and −1.0 are shown in parts “a” and “b” of Fig. 3 wherein tendency towards
contraction and continuous strain hardening gradually turns into contraction and
strain softening as ζ varies from +1.0 to −1.0. Certain states for instability and
associated Instability Line in experimental data are included in the Figs. 3a, b.
Without changing the parameters given in Table 1, behaviors of samples under
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Fig. 2 Simulation of Fraser River sand behavior for: a and b four tests under fully drained

Table 1 Model parameters used in simulation of Fraser River sand behavior

Elasticity Critical state line Dilatancy Plastic modulus
G0 K0 M e0 λ ξ A nd h0 ch nb

45.0 41.25 1.45 0.98 0.05 0. 70 0.40 0.80 2.5 × 106 13.5 0.30
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partially drained stress paths are simulated (see Fig. 3a, b). Similar to experimental
data, the tendency toward contraction increases as ζ evolves from +1.0 to −1.0 in
the model simulations. Besides, instability instigates beyond the peak shear strength
in strain softening regime of the behavior for tests with ζ = −0.10 to −1. Except for
the sample with ζ = −1, predicted stress states for onset of instability in samples
with z = −0.1 to −0.4 are similar to those in experiments. However as shown in
Fig. 3c, experimental failure line fits the predicted states reasonably.

5 Conclusions

Recent experimental findings emphasize that generalized drainage of medium loose
and loose sands may lead to certain states more damaging than those of undrained
condition. A state-dependent constitutive model was used for simulation of the
behavior of sand samples u fully drained, undrained, and partially drained shear.
Under partial drainage, it was observed that positive ζ= ε̇v ̸ε̇a ratio results in
improvement of load bearing structure; however, negative ζ causes progressive
debilitation of soil structure. Onset of instability in partially drained tests was
predicted using the concept of loss of uniqueness. It was shown that instability
occurs once post-peak stress path intersects the failure line.
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Fig. 3 Simulation of Fraser River sand behavior under partially drained condition: a, b experi-
mental data for q versus p and q versus ε1, c and d predicted behaviors
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Prediction of Sand Instability Under
Constant Shear Drained Paths

M.J. Alipour and A. Lashkari

Abstract The unstable behavior of soil slopes under water infiltration is usually
studied by means of constant shear drained triaxial tests, wherein mean principal
effective stress decreases gradually, while shear stress is maintained fixed and full
drainage is allowed. A certain criterion for loss of stability under triaxial constant
shear drained paths is obtained here. A state-dependent plasticity model is
employed to simulate behavior of Changi sand samples under constant shear
drained path. Comparison of model simulations with experimental data indicates
that, sand behavior under triaxial drained and undrained paths, as well as triaxial
constant shear drained tests, can be simulated realistically using a unique set of
parameters.

1 Introduction

Instability in soil mechanics is usually attributed to abrupt generation of irreversible
strains, and inability to support external loads [4]. Recent experimental findings
have revealed that sands may become unstable under Constant Shear Drained
(CSD) paths in which mean principal effective stress declines gradually under
constant shear stress while complete drainage is allowed (e.g., [2, 4, 5]). In practice,
experimental findings have indicated that water infiltration may eventuate in
calamitous failure of slopes. It is suggested that the behavior of slope elements
during water infiltration under fixed external loads can be investigated effectively in
triaxial CSD tests (e.g., [4]).

A critical state plasticity model is employed here to simulate the behavior of
sand under CSD. Using the concept of loss of uniqueness, general condition for
onset of instability under CSD is obtained. It is shown that the plasticity model can
reasonably simulate instability of sands under constant shear drained path.
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2 Constitutive Model

The constitutive model of Golchin and Lashkari [8], an extension of the bounding
surface model by Dafalias and Manzari [6], is adopted here. Elastic moduli are
obtained from a Gibbs energy function to guarantee conservation of energy in any
arbitrary closed loop elastic path. Elastic-plastic coupling permits stress-induced
evolution of elastic moduli, when soil state steps in the elastoplastic regime of
behavior. In triaxial space, constitutive model is:

p ̇
q ̇

� �
=

Dpp Dpq

Dqp Dqq

� � ε̇v
ε̇q

� �

=
K J

J 3G

� �
−

φ
pKp +φ ½3G− Jη+ ðJ −KηÞd�

�

×
ðJ +KdÞðJ −KηÞ ðJ +KdÞð3G− JηÞ
ð3G+ JdÞðJ −KηÞ ð3G+ JdÞð3G− JηÞ

� �� ε̇v
ε̇q

� �
ð1Þ

where p ½= ðσ′a + 2σ′rÞ ̸3� and q ½= σ′a + σ′r� are, respectively, mean principal
effective stress and shear stress in which σ′a and σ′r are axial and radial effective
stresses. εv ½= εa + 2εr� and εq ½=2 ̸3ðεa − εrÞ� are volumetric and shear strains in
which εa and εr are axial and radial strains. In Eq. (1), Γ is the Gibbs free energy
function of Einav and Puzrin [7]:

Γðp, q, χÞ= p2− χ − ð2− χÞp p1− χ
0

K ð2− χÞð1− χÞp1− χ
ref

+
q2

6G p1− χ
ref pχ

−
q0ð2q p0 − χq0 pÞ
6G p1− χ

ref p1+ χ
0

ð2Þ

where p0 and q0 are p and q at zero elastic strains, respectively.
K=K0 ðeg − eÞ2 ̸ð1+ eÞ and G=G0 ðeg − eÞ2 ̸ð1+ eÞ in which K0 and G0 are
parameters and eg = 2.17 is suitable for sands with sub-rounded to well-rounded
grains. pref (= 101 kPa) is a reference pressure and η=q ̸p is stress ratio. K, G, and J
are, respectively, the hyperelastic bulk, shear, and shear-volumetric coupling moduli:

K=
∂
2Γ ̸∂q∂q
det H

=
1

1− χðχ− 1Þ
2 η2 K

3G

� 	Kpref
p
pref

� �χ

ð3aÞ

G=
1 ̸3 ∂

2Γ ̸∂p∂p
det H

=
1

1− χðχ− 1Þ
2 η2 K

3G

� 	 G +
χðχ+1Þ

6
η2 K

� �
pref

p
pref

� �χ

ð3bÞ

J =
− ∂

2Γ ̸∂p∂q
det H

=
1

1− χðχ− 1Þ
2 η2 K

3G

� 	 χ ηK pref
p
pref

� �χ

ð3cÞ
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where 2 × 2 Hessian matrix H is defined by:

H= ∂
2Γ ̸∂p∂p ∂

2Γ ̸∂p∂q
∂
2Γ ̸∂q∂p ∂

2Γ ̸∂q∂q

� �
ð4Þ

χ in Eqs. (2) and (3a)–(3c) varies through:

χ= χðαÞ= χmin +
ðχmax − χminÞ

1+B ðαb ̸α− 1Þ ð5Þ

where χmin = 0.45, χmax = 0.95 and B = 0.10 are realistic boundaries for various
sands. φ=1+Γ, q χχ, αKp where χ, α and Γ, qχ are, respectively, represent ∂χ ̸∂α and
∂
2Γ ̸∂q∂χ. Plastic modulus (Kp) and dilatancy function (d) are defined by:

Kp = h0ð1− ch eÞ ⋅
αb − α
α− αinj j

pref
p

� �1− χ

; d =Aðαd − αÞ ð6Þ

where h0, ch and A are soil parameters. α is back-stress ratio which is linked to
stress ratio through f = η− α−m=0 in triaxial compression wherein m = 0.001
here. According to Dafalias and Manzari [6], αb and αd are calculated through:

αb =M expð− nb ψÞ−m ; αd =M expðnd ψÞ−m ð7Þ

in which, M is slope of critical state line in the q versus p plane and nb and nd are
soil parameters. ψ is state parameter that is calculated by:

ψ=e− ecs = e− ½e0 − λ p ̸prefð Þξ� ð8Þ

e0, λ and ξ are soil parameters and ecs is critical void ratio at p.

3 Instability Under CSD

Following the pioneering works of Borja [3] and Andrade et al. [1] based on
bifurcation theory, loss of uniqueness or stability in multiaxial space requires
σ̇½ �½ �: ε̇½ �½ �=0 in which ε̇½ �½ � is jump in strain rate tensor due to duplicate solution for

velocity. σ̇½ �½ � is jump in effective stress tensor related to ε̇½ �½ �. Under triaxial
compression CSD in which q ̇½ �½ �=0 holds, the above criterion becomes:

p ̇½ �½ � ε̇v½ �½ �=0 ð9Þ
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where p ̇½ �½ �, q ̇½ �½ � and ε̇v½ �½ � are, respectively, jumps in p, q and εv due to duplicate
solutions for velocity field. Implementing Eq. (1) in Eq. (9) and rearrangement of
terms gives the following criterion for loss of uniqueness under CSD:

p ̇½ �½ � 2 Dqq = 0 ð10Þ

4 Simulation of Sand Behavior Under Conventional
Triaxial Paths

Data of triaxial tests on Changi sand, a marine dredged silica sand for land recla-
mation in Singapore, are adopted for evaluation of the constitutive model. The basic
properties of Changi sand are presented in Wanatowski and Chu [9]. For loose and
very loose Changi sand samples, the model predictions are illustrated versus
experimental data of drained, and K-consolidated undrained triaxial tests in Fig. 1,
respectively. The model parameters used in simulations are given in Table 1. In
Fig. 1, the plasticity model takes into account the common trend of Changi sand
behavior associated with density, confining stress, and drainage condition.
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Fig. 1 Simulation of the behavior of Changi sand: a and b q versus ε1 and εv versus ε1 curves for
five conventional triaxial drained tests, c and d stress paths and q versus ε1 curves for four
anisotropically consolidated undrained tests (data from [9])

108 M.J. Alipour and A. Lashkari



www.manaraa.com

5 Simulation of Sand Behavior Under CSD

The constitutive model is applied to simulate behavior of initially very loose
(e0 = 0.945) and very dense (e0 = 0.657) samples of Changi sand under CSD. In
laboratory, the samples were sheared along conventional drained triaxial stress path
up to q = 165 kPa (for very loose sample) and q = 300 kPa (for very dense
sample) after isotropic consolidation under pc = 150 kPa. Consequently, samples
were subjected to CSD by continuously decreasing mean principal effective stress
under relatively fixed shear stress, until ε1 = 8–10% was attained. Without
changing the model parameters in Table 1, soil behavior in the CSD tests are
simulated and depicted against data in Fig. 2. Parts “a” to “d” of Fig. 2 indicate that
instability occurs prior to complete mobilization of critical state stress ratio for the
loose sample; however, the dense one becomes unstable at peak stress ratio,
whereat decrease in mean principal effective stress halts. Besides, axial strain is
generated rapidly once soil becomes unstable in both loose and dense samples.

Table 1 Model parameters in simulation of Changi sand behavior

Elasticity Critical state line Dilatancy Plastic modulus
G0 K0 M e0 λ ξ A nd h0 ch nb

70 54.4 1.353 0.9345 0.0578 0.5913 1.6 2.4 1132 0.9756 0.80
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Fig. 2 Simulation of behavior for very loose (e0 = 0.945) and very dense (e0 = 0.657) Changi
sand samples under constant shear drained stress paths: a stress path, b axial strain versus mean
principal effective stress, c volumetric strain versus mean principal effective stress and d void ratio
versus mean principal effective stress (data taken from [4])
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6 Conclusions

Loose granular soils are susceptible to abrupt loss of stability when subjected to
constant shear drained (CSD) paths. In this paper, a critical state bounding surface
plasticity model was applied to predict instability of a very loose sample of Changi
sand under CSD. When subjected to CSD, it was observed that loose sands become
unstable at certain states beyond which strains are generated faster, prior to com-
plete mobilization of critical state stress ratio (i.e., friction angle). It is found that the
state-dependent model can be applied to simulate conventional drained and
undrained triaxial tests, as well as CSD test using a single set of parameters.
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Model Prediction of Static Liquefaction
in Unsaturated Sands

Xilin Lu, Maosong Huang and Jiangu Qian

Abstract The initiation of static liquefaction of unsaturated sand was studied by an
extended Mohr-Coulomb elasto-plasticity hardening model. The second-order work
was used to check the initiation point of static liquefaction under undrained shear.
The results showed that the mechanical behavior of unsaturated sands will be
changed by the compressibility of gas. The critical stress ratio at the liquefaction
instability point decreases with the saturation degree.

1 Introduction

Static liquefaction has been widely studied in saturated soil [1, 11]. Other than the
density of sands, the consolidation state [7], and the stress state [6], the drainage
condition [17], and the initial degree of saturation [5] also showed influence on the
instability of sand. The existence of gas makes the unsaturated sand compressible
and restricts the buildup of excess pore-water pressure [14]. Undrained triaxial
compression tests have shown that loose unsaturated sands produce static lique-
faction only when the initial saturation degree exceeds a critical value [8]. In order
to describe the mechanical behavior of unsaturated soil, a suitable constitutive
model is needed. Most of the current models are based on models proposed for
saturated soil. Wheeler [15] proposed a conceptual model to calibrate the behavior
of unsaturated soils containing large gas bubbles. Grozic et al. [9] proposed a
constitutive model for gassy sand based on an existing model. Sultan and Garziglia
[13] presented a constitutive model for gassy soil based on Cam-Clay model.
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This paper studied the onset of static liquefaction in unsaturated sand by
proposing a material state-dependent elastoplasticity model. The fluid pressure
change in unsaturated sand under undrained loading was obtained. The stress-strain
relationship under the undrained triaxial condition was formulated by the proposed
model. The ability of the model in predicting static liquefaction was validated by
comparing to existing experiments.

2 Constitutive Modeling of the Unsaturated Sand

The constitutive model for unsaturated sand was built on an existing material state
dependent Mohr-Coulomb hardening model. The yield function and potential
plastic function are

F = q−Mp′ =0
Q= q+Mdp′ ln

p′

p0
= 0

(
ð1Þ

where the mean effective pressure is p′ = σii ̸3− ugw, the equivalent shear stress is

q=
ffiffiffiffiffiffiffi
3J2

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3s′ijs

′

ij ̸2
q

, the deviatoric stress is s′ij = σ′ij − δijp′ and δij is the Kronecker

delta, M is the stress ratio, and Md is the stress-dilatancy.
The liquid phase is assumed continuous and gas exists as discrete bubbles

embedded in liquid. The effective stress of unsaturated sands is formulated as

σ′ =σ− ugw1 ð2Þ

The change of pore fluid pressure is [3]

Δugw =
ug + pat
ð1− SrÞnΔεv ð3Þ

The material-dependent peak stress ratio and stress-dilatancy is

Mf =Mcs expð− nbψÞ ð4aÞ

Md =Mcs expðndψÞ ð4bÞ

where ψ = e− ec is material state parameter [4], ec is void ratio at critical state, nb
and nd are peak stress ratio and dilatancy parameters.

The critical state line is defined [16] by

ec = ec0 − λc
p
pat

� �ξ

ð5Þ
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where ec0, λc and ξ are the material parameters, pat =101.3 kPa is atmospheric
pressure.

The evolution of M follows the hyperbolic law

M =Mf
εps

A+ εps
ð6Þ

After derivation by elastoplasticity theory, the rate form constitutive relationship
can be obtained. The obtained relationship is same with Pietruszczak and Pande
[12] if the surface tension force of air bubble ignored. This model is based on
deviatoric hardening; it may not suitable for soil of volumetric hardening. Besides,
the effect of pressure on the water-gas pressure difference is not considered in the
model.

3 Criteria for the Onset of Static Liquefaction

The condition for material instability of soil is

d2w= dσ′: dε≤ 0 ð7Þ

where d2w is the second-order work, d eσ′ is effective stress increment and deε is the
corresponding strain increment.

In the case of fully saturated sands under a undrained triaxial condition, the
criterion for static liquefaction is [2]

Dep
pqð2, 2Þ=0 ð8Þ

Since the volumetric strain is not zero in unsaturated sand when subjected to
undrained loading, Eq. (8) cannot be used in the case of unsaturated sand, and the
initiation of static liquefaction predicted by Eq. (7) in unsaturated sand will be
different from the saturated sand.

4 Model Prediction

The undrained triaxial tests of Ottawa sand [10] were simulated. The size of
specimen was 100 mm in height and 50 mm in diameter; the confining pressure
was 100 kPa. The initial saturation degrees of specimen were 94.5, 96.3, 98.1, 99.2,
and 100%; the initial void ratios of the specimens were 0.774, 0.773, 0.773, 0.770,
and 0.769. After determining material parameters directly from experiments
and choosing suitable fitting parameters, the material parameters adopted in the
simulation were G0 = 50, ν = 0.15, Mcs = 1.2, nb = 1.1, nd = 3.5, ec0 = 0.815,
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λc = 0.063, ξ = 0.3, A = 0.002. An explicit integration method was used to inte-
grate the rate-form constitutive relationship under undrained condition. The pre-
dicted stress-strain behavior and stress path are shown in Fig. 1. In the case of low
initial saturation degree, the predicted stress path is close to that of drained triaxial
test at the initial stage, and then approaches to a stress path of undrained triaxial
test. Although there is discrepancy of predicted results from experimental data, the
trend of the undrained behavior can be well captured. The second order work was
calculated during the integration of the rate-form stress-strain relationship. The
results are shown in Fig. 2a, the increase of the initial saturation degree induces the
second order work falling below zero rapidly. The stress ratio corresponding to the
instability points are shown in Fig. 2b, it decreases with the initial saturation, and
the predicted results compare very well with the experiments.
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5 Conclusion

A material state-dependent Mohr-Coulomb hardening elasto-plasticity model was
proposed to calibrate the stress-strain relationship of unsaturated sand. The
mechanical behavior under undrained condition was shown to rely on the initial
saturation ratio. The onset of static liquefaction under undrained condition was
predicted by the second-order work. The decrease of initial saturation degree results
in compressibility of soil and induces higher shear stress. It also reduces the stress
ratio at the instability point.
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Microscale Analysis of the Effect of Suffusion
on Soil Mechanical Properties

Rodaina Aboul Hosn, Cong Doan Nguyen, Luc Sibille,
Nadia Benahmed and Bruno Chareyre

Abstract Suffusion is a particular internal erosion process that can lead to impor-

tant disorders in water retaining structures such as embankment dams and levees.

It causes modifications in the soil micro-structure and may modify the mechanical

behaviour of the soil leading to deformations at the macroscopic scale. Therefore, the

aim of this study is to investigate the consequences of internal erosion on the mechan-

ical properties of the soil. We present such an investigation through numerical and

experimental approaches. For the experimental approach, a newly developed suffu-

sion test apparatus is used while for the numerical approach, a model is established

based on the discrete element method (DEM) with a one-way fluid-solid coupling.

Keywords Internal erosion ⋅ Suffusion ⋅ Shear strength ⋅ Erosion tests ⋅ Discrete

element method

1 Introduction

Suffusion is a particular internal erosion process involving the selective erosion of

fine particles within the matrix of coarse particles. Although the consequences of suf-

fusion on the mechanical properties of the soil have been investigated through exper-

imental [3, 9] and numerical studies [7, 8], they are not yet completely described.

Therefore, with the objective to establish a clear relation between the removal of

fine particles and the mechanical properties of eroded soils, this paper presents

such an analysis following both experimental and numerical approaches. Effects

on the hydraulic and the mechanical properties of the eroded soils were noticed in
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Fig. 1 Particle size

distribution of Hostun sand

experiments using a newly developed suffusion test apparatus. To reproduce these

effects numerically, an extraction procedure, based on the discrete element method

with a one-way fluid-solid coupling, is defined.

2 Experimental Approach

2.1 The Material Used

A mixture of coarse and fine silica sand, (HN 1/2.5 and HN34, respectively), is used.

The soil samples were prepared with an initial relative density of 40% and a fines

content (FC) of 25%. Figure 1 shows the particle size distribution of the used sand.

The potential of internal instability is assessed following the methods proposed by

[4, 5] which indicated that the studied soil is vulnerable to internal erosion.

2.2 Experimental Setup and Procedure

Suffusion tests were carried out using a newly developed suffusion test apparatus

made up of a cylindrical Plexiglas cell, 70 mm in internal diameter, to fit the pedestal

triaxial cell. The cell is connected to a water supply system and fines collector. The

soil samples were reconstituted by moist tamping. Then, they were saturated by

flushing CO2 first, followed by de-aired water in an upward direction at very low

flow rate to prevent the heave phenomenon. Thereafter, the samples were subjected

to the erosion test by flushing water in a downward direction. In this test, the flow

rate is increased by steps. The corresponding hydraulic gradient, i, for each flow

rate is determined from the pressure gradient measured by two pressure transducers

installed at the upper and lower parts of the suffusion cell. Similarly, the eroded mass

is collected and weighted. Note that the flow rate is increased until the erosion of fine
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Fig. 2 Illustration of the

hydraulic loading during

internal erosion

particles is triggered, and then kept constant until no eroded fines are observed. The

test is then stopped when reaching the maximum laminar flow velocity. The increas-

ing flow rate process is illustrated in Fig. 2.

Once the internal erosion process is done, the soil samples are recovered and

frozen to preserve the microstructure. Afterwards, they are installed in the triaxial

cell, confined at 100 kPa, and then sheared under drained conditions at a constant

strain rate of 1% per minute to investigate the stress-strain behavior of eroded soil

samples.

2.3 Results and Discussion

The variation of the hydraulic gradient (i), the hydraulic conductivity (k) and the

eroded mass (Me) are illustrated in Figs. 3 and 4. It is noticed that at low flow veloc-

ities (v), the hydraulic gradient is almost negligible. When the flow velocity exceeds

0.06 cm/s, a sudden increase of the hydraulic gradient is observed accompanied with

a sudden decrease of permeability. It is worth noting here, that no eroded mass was

collected at this stage. Therefore, such a sharp increase in the hydraulic gradient may

be attributed to the clogging of the constrictions by the transported fine particles. In

Fig. 3 The variation of the

hydraulic gradient with

seepage velocity
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Fig. 4 Ratio of the eroded mass to the initial fine particle mass as a function of the seepage velocity

Fig. 5 Responses to drained triaxial compression tests of soil samples with and without erosion

other words, erosion might have occured inside the sample, but particles were not

washed out.

With further increase of the flow rate, the hydraulic gradient increases very

slightly and some fine grains were collected resulting in a decrease in the hydraulic

conductivity. This indicates that the trapped particles were dislodged and transported

outside the sample; However, the erosion is not predominant. As the flow velocity

increases, the hydraulic properties keep changing as a result of the co-existance of

erosion-clogging processes.

Responses to drained triaxial compression tests are illustrated in Fig. 5. The eroded

soil shows a lower shear strength compared to the soil without erosion. The peak fric-

tion angle decreases from 31.4
◦

to 27.8
◦

and that at the critical state decreases from

29.2
◦

to 26.7
◦
. However, both soil specimens exhibit the same volumetric strains,

even though the relative density decreases from 40 to 20% after erosion. Neverthe-

less, recent researches on reconstituted soil mixtures indicate that the mechanical

behavior is mainly controlled by the coarse grains structure; hence by the inter-grains

void ratio, eg. Applying this concept, it is found that eg of the eroded sample is equal

to 0.904 (with FC = 16%), lower than that of the non-eroded sample (eg = 1.039

and FC = 25%). Therefore, such a less contractant behavior may be explained by the

combined effect of the new fines content and the intergranular void ratio. Further

investigations are still ongoing.
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3 Numerical Approach

Complementary to the experimental approach, a discrete numerical model is defined.

The granular assembly is composed of spherical discrete elements. Periodic bound-

ary conditions are adopted and gravity is neglected in all simulations.

The interparticle interaction is modelled by a linear elastic relationship between

forces and displacements with a slip Coulomb model. Since spherical particles cause

excessive rolling, rolling resistance is taken into account in the contact law. A par-

ticle extraction procedure, based on a one way fluid-solid coupling, is defined to

mimic the internal erosion (detachment and transport) of fine particles. For the one-

way coupling, the DEM-PFV (Pore scale Finite Volume) [2] is followed to solve the

interstitial fluid flow and to compute the fluid forces applied on each soil particle.

3.1 Extraction Procedure

The suffusion process can be described accurately by a complete fluid-solid coupling

which would represent an important computational cost. Therefore, the following

simplified extraction procedure, involving a partial coupling, has been defined [1].

Starting from a granular assembly at a given equilibrium state reached for a given

stress state (isotropic or deviatoric), the interstitial fluid flow, generated by applying

a global hydraulic gradient, is solved and fluid forces applied on solid particles are

computed. Then DEM cycles are iterated under constant fluid forces (this is why

the coupling is “one way”) to check whether solid particles can retrieve an equilib-

rium state under the combined action of contact and fluid forces. When the fluid

force is not balanced by contact forces, the particle loses its equilibrium and is con-

sidered detached. Thereafter, the possibility of detached particles to be transported

is checked by comparing their sizes with a controlling constriction size, chosen by

following the suggestion of [6] in their filter criterion and corresponds to Dc35 (the

constriction size for which 35% of the constrictions of the granular assembly are

finer than this size). Detached particles with a diameter smaller than Dc35 are consid-

ered as eroded particles and are removed from the granular assembly. Finally, DEM

cycles are iterated again with the new particle configuration (i.e. without the eroded

particles) and without any fluid forces. Due to the particles removal, the granular

assembly may deform under the constant applied stress state. Then the simulation is

run until a new equilibrium state (if any) is reached. Such a process can be repeated

to pursue the erosion development, or a drained triaxial compression test can be per-

formed to evaluate the new mechanical properties of the eroded soil.

Using the particle size distribution of Fontainebleau soil (Fig. 6), the defined

extraction procedure is applied by progressively increasing the hydraulic gradient.

Figure 7 shows an increase in the eroded mass (Me), including active particles Mea
(i.e., particles participating in the force transfer), with the hydraulic gradient, i. When

a little amount of active particles is eroded, the soil shows negligible deformations as



www.manaraa.com

122 R.A. Hosn et al.

Fig. 6 Particles size

distribution of Fontainebleau

sand

Fig. 7 The variation of the

eroded mass with the

hydraulic gradient, i

demonstrated in Fig. 8. However, as more active particles are eroded, the soil com-

presses significantly showing larger deformations at the macroscopic scale. Never-

theless, as noticed from Fig. 8, the porosity increases after erosion even if the soil

shows large deformations. Therefore, the creation of a more open microstructure is

predominant during suffusion.

3.2 Post-suffusion Properties

The effect of erosion on the shear strength, obtained by performing drained triaxial

compression tests, is shown in Fig. 9. A non-linear non-monotonic relation is found

between the maximum friction angle and the percentage of the active eroded mass. It
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Fig. 8 The variation of the

volumetric deformation and

the porosity with the active

eroded mass, Mea

Fig. 9 The variation of the

maximum friction angle with

the active eroded mass, Mea

is noticed that, at low percentages of active eroded mass, when the soil didn’t deform,

the shear strength decreases significantly. However, as we continue eroding active

particles, the soil deforms and the porosity decreases slightly, as shown previously

in Fig. 8, so that the soil recovers part of its strength. But in all cases, the shear

strength decreases after erosion similarly to the experimental results (Fig. 5).

4 Conclusion

This paper presents two approaches to describe the effect of suffusion on the mechan-

ical properties of the soil. Experiments were done using a newly developed seep-

age test apparatus while numerically, an extraction procedure is defined based on a

one-way fluid-solid coupling. Performing such erosion tests, effects on the hydraulic

and mechanical properties of the soil were noticed with a decrease in the soil shear

strength for the studied soil samples. However, the experimental and numerical

approaches presented in this paper are currently performed on two different grad-

ings where a simplified one was used numerically to limit the computational cost.

In future work, the numerical approach will be reiterated by considering the grading

used experimentally, with the objective to reach a description of the shear strength

degradation, complementary to the experimental one.
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A Numerical Model of Internal Erosion
for Multiphase Geomaterials

Sayuri Kimoto, Toshifumi Akaki, Benjamin Loret and Fusao Oka

Abstract Internal erosion is the detachment of fine soil particles due to seepage
flow, with ensuing increasing porosity, and transport of these particles out of the
soil mass. In the present study, firstly we have formulated the constitutive equations
of the internal erosion, that is, the erosion criteria and the rate equation of the mass
transfer. The driving force for erosion is assumed to be given by the interaction
term, i.e. relative velocity between two phases in the equation of motions for the
two-phase mixture. Then, field equations to simulate hydro-mechanical behavior
due to the internal erosion were derived in the framework of multiphase mixture
theory. In addition, laboratory erosion tests using gap-graded sandy soil are sim-
ulated by the proposed model and the validity are discussed with respect to the rate
of eroded soil mass and the particle size distribution after the erosion test.

1 Introduction

Soil particles in the earth structures are dislodged/extracted and transported by
seepage flow when the hydraulic flow is intense enough, which is called the internal
erosion. Progressive degradation of soil structure due to the internal erosion may
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lead to the local failure, such as, piping, and may result in cavities in the earth
structures, such as earth dams, dikes and levees. These are one of the main causes of
the failure of geomaterials. In the present study, firstly we have formulated the
constitutive equations of the internal erosion, that is, the erosion criteria and the rate
equation of the mass transfer. We assume that the erosion takes place when the
hydrodynamical driving force acting on the small volume of mixture is larger than
the resistance force over the area. Then, we derived field equations to simulate
hydro-mechanical behavior due to the internal erosion in the framework of multi-
phase mixture theory. Finally, laboratory erosion tests using gap-graded sandy soil
are simulated by the proposed model and the validity is discussed with respect to
the rate of eroded soil mass and the particle size distribution after the erosion test.

2 Equations of Motion and Mass Balance Equations

The onset conditions of the internal erosion are derived based on the multi-phase
mixture theory. The constituents are the soil particles (S), the eroded soil particles
(FS), and the pore water (W). It is assumed that the eroded soil particles moves
unified with the pore fluid, and the fluid phase (F) is determined as F = W + FS.
The equation of the balance of the linear momentum of the solid phase is given by,

ρSu ̈Si =
∂σSij
∂xj

+ ρSbi +Ri ð1Þ

where ρS = nSρSð Þ is the mass density of the solid phase, nS is the volume fraction of

the solid phase, ρS is the mass density of soil particle, σSij = σ′ij − nSPFδij
� �

is the

partial stress of the solid phase, σ′ij is the skeleton stress, PF is the average pressure
of the fluid phase, uS̈i is the acceleration of the solid phase, bi is the body force, and
Ri is the interaction force term induced by the relative motion between the solid and
fluid phases.

The equation of the balance of the linear momentum of the fluid phase is given
by the following equation, where

ρFu ̈Fi =
∂σFji
∂xj

+ ρFbi −Ri ð2Þ

where ρF = nFρFð Þ is the mass density of the fluid phase, nF = nW + nFSð Þ is the
volume fraction of the fluid phase, ρF is the mass density of the fluid phase,
σFij = − nFPFδij

� �
is the partial stress of the fluid phase, u ̈Fi is the acceleration of the

fluid phase. The interaction term Ri in Eqs. (1) and (2) is proportional to the relative
velocity between two phases and is given by
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Ri = nF
ρFg
k

qi ð3Þ

qi = nF u ̇Fi − u ̇Si
� � ð4Þ

where uḞi and uṠi are velocities of the fluid phase and the solid phase respectively, γw
is the unit weight of the water, k is the proportional coefficient (permeability
coefficient). Neglecting the acceleration term of Eq. (2) and assuming the space
gradient is small, we have

Ri = − nF
∂PF

∂xi
− ρFbi

� �
= − nFρFg

∂h
∂xi

ð5Þ

where h is the total head of the fluid phase and Eqs. (3)–(5) expresses Darcy’s law.
The mass balance equation for each phase is given by

∂ρα

∂t
+

∂ ραuα̇i
� �
∂xi

= ρ ̇α ðα= S,W ,FSÞ ð6Þ

where ρFS = nFSρSð Þ, u ̇FSi = uḞi , ρ
ḞS = − ρṠ, and ρẆ =0.

3 Constitutive Equation of the Internal Erosion

Firstly we derive the onset conditions of the internal erosion of the uncemented soil.
It is assumed that the erosion occur when the driving force acts on the small volume
of soil, which is larger than the resistance force (see Fig. 1). In the model, the
driving force of the erosion is given by the interaction term Ri in Eqs. (1) and (2).
The onset condition in the flow direction ni is given by

VRini ≥ f1 σ′n, ε
p, S

� �
Sgr ð7Þ

where V is the total volume around the soil particles, Sgr is the surface area over
which acts the resistance force, f1 is the resistance force against the erosion per unite
surface that may depend on the effective stress σ′n acting in the direction ni , ε

p is the
inelastic strain, S is the other factor such as the saturation of the gas in the case of

Fig. 1 Driving force and
resistance force for the
volume V of a set of soil
particles in the direction of ni
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the existence of the gas, the initial fine content, clay content, chemical action etc.
Sgr ̸V =4nS ̸D for the cylindrical volume, Sgr ̸V =6nS ̸D for the spherical volume;
D is the diameter of soil particle.

For the spherical volume, Eq. (7) becomes

Rini − f1 σ′n, ε
p, S

� � 6ns
D

≥ 0 ð8Þ

In the case that the permeability is proportional to the square of the diameter as
k= kD̃2, the erosion condition for the particle with the diameter D becomes

∴q ni,Dð Þ= qini − f1 σ′n, ε
p, S

� �
kD̃

6ns

ρFgnF
≥ 0 ð9Þ

where Eq. (3) is used. Equation (9) is the onset conditions for the erosion of the
particles with the diameter of D in the ni direction. The direction of the erosion is
the direction ni where q ni,Dð Þ in Eq. (9) is maximum. When the resistance force is
free from the direction, the erosion occurs in the direction of the flow. The resis-
tance to erosion is assume to increase when the overall effective mean stress is
large. On the other hand, a large shear strain is considered to have deteriorated the
solid skeleton and therefore favored the erosion. These two effects are introduced in
the function of the resistance f1 as

f1 =
k*

k ̃
σ′m
σ′mr

� �m1

exp −m2γ
pð Þ ð10Þ

where k*, m1, m2, σ′mr are the material parameters. σ′m is the mean effective stress, γp

is the second invariant of the plastic deviatoric strain. In the present study,
m1 =m2 = 0 is assumed since we do not have enough data to determine.

The rate equation of the erosion of the particle with a diameter of D is given by

ρ ̇FSðDÞ= − ρ ̇SðDÞ= ⟨ f2 qðDÞð Þ⟩MðDÞ−RM0ðDÞ
MT

ð11Þ

⟨ f2 qðDÞð Þ⟩=0 for q<0
⟨ f2 qðDÞð Þ⟩= f2 qðDÞð Þ= αer q− qcrð Þ for q≥ 0

�
ð12Þ

where ρḞSðDÞ = − ρ ̇SðDÞð Þ is the rate of mass erosion per unit time and unit volume
of the particle D, MT is the total mass of particles, MðDÞ is the mass of the particle
with a diameter of D, M0ðDÞ is the initial mass of the particle. αer is the coefficient
of the erosion rate, R is a material parameter of the ratio of the remaining particles,
qcr is the critical value of flow rate for erosion. Equations (11) and (12) can be
explained as follows. First, the erosion rate can be non zero only if the criterion for
erosion as indication in Eq. (9) via the erosion force q is satisfied. Second the
magnitude of the erosion is made function of the erosion force q via the function f2.
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The second factor in Eq. (11) accounts for the particles that have already been
eroded.

The governing equations are given by the above equations with the constitutive
equation of soil skeleton. The constitutive equation is of the elasto-viscoplastic
type. The void ratio dependency of the permeability is assumed to be given by
Kozeny-Carman equation. The governing equations are solved by FEM and the
unknowns are the displacement of soil skeleton, pore fluid pressure and the con-
centration c of the eroded soil particles defined by c= nFS ̸nF .

4 Numerical Analysis

In order to validate the analysis method, we have simulated the experiments of the
internal erosion tests for the gap-graded sands of the mixture of silica sand
No. 3 and No. 8 with a downward flow conducted by [1]. Figure 2 shows the
analysis model. The grain size distribution curves before and after the erosion are
shown in Fig. 3, and the simulated and the experimental results of the eroded soil
volume for the different values of the coefficient αer of the erosion rate is illustrated
in Fig. 4. The suffusion (the washing out of the fine) of the fine sand (silica sand
No. 8) is well reproduced.

Fig. 2 Finite element mesh
and boundary conditions
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5 Conclusions

In the present study, the constitutive equations of the internal erosion, that is, the
erosion criterion and the rate equation of the mass transfer are formulated. Then, the
field equations to simulate hydro-mechanical behavior due to the internal erosion
were derived in the framework of multiphase mixture theory [2, 3]. In addition,
validity of the proposed model was discussed with respect to the rate of eroded soil
mass and the particle size distribution after the erosion test. The main conclusions
obtained are as follows:

1. A coupled behavior of soil-water interaction and the internal erosion followed
by the transportation of eroded particles can be simulated by the proposed
model. Change of grain size distribution due to flow out of fine particles
observed in the experiments was well reproduced.

2. The simulated mass of eroded soil was compared to that obtained in the
experiments. The tendency that the rate of eroded soil increases with increasing
flow rate and decreases to zero was reproduced, even though the behavior at an
early stage was slightly different from the one obtained in the experiments.

Fig. 3 Grain size distribution
before and after erosion

Fig. 4 Simulated and
experimental results of the
eroded soil
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Chemically Induced Strain Localization
in Geomaterials

Ioannis Stefanou and Jean Sulem

Abstract Deformation bands play an important role in reservoir engineering,
geological storage, underwater landslides and slow geological procedures related to
creep and aseismic slip. Various mechanisms can be involved at different scales and
may be responsible for deformation bands. Mechanical and chemical degradation of
the grain skeleton is a softening mechanism that leads to compaction, shear or even
dilation band formation. The present study is twofold. On one hand it focuses on the
mathematical modeling of chemically induced strain localization instabilities in
porous rocks and on the other hand it explores the conditions for their creation. The
post localization regime is then studied by numerically integrating the governing
equations of the system.

1 Introduction

In a recent paper [1], instabilities in the form of deformation bands triggered by
chemical degradation of the solid skeleton have been studied. Chemical dissolution
and grain breakage have been considered. The interest of the approach is in the
strong chemo-poro-mechanical coupling which was considered. As the stresses and
the deformations evolve, the grains of the material break leading to an increase of
their specific surface. As the dissolution rate depends upon the area of contact
between the reactive fluid and the minerals, dissolution is accelerated by grain
fracturing and grain breakage and chemical softening is further enhanced. All these
phenomena are observed macroscopically as an overall creep behavior, However,
strain localization can occur, affecting drastically the strength and the permeability
of the rock formation.
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The effect of chemical dissolution is important in field and in reservoir appli-
cations. For instance, the experimental results of [2] showed that the chemical
dissolution of a limestone leads to a significant increase of the porosity (from 23%
for the intact rock to 27% for the degraded one). According to the same authors, the
plastic pore collapse threshold is also reduced and the chemically degraded mate-
rials become more collapsible and more ductile due to the increase in porosity and
the degradation of the inter-granular cementation. This evidence is corroborated by
other authors (e.g. [3–6]) for a class of geomaterials and results in a contraction of
the elastic domain only due to chemical reasons (chemical softening). In parallel, in
a saturated porous geomaterial, the progressive mechanical damage of the solid
skeleton during compaction has as a result the increase of the interface area of the
reactants (i.e. of the solution with the solid) and consequently the acceleration of the
dissolution rate of the solid phase [7]. Thus, the solid skeleton is degraded more
rapidly (mass removal because of dissolution), the overall mechanical properties of
the system diminish (contraction of the elastic domain—chemical softening),
deformations increase and the solid skeleton is further damaged (intergranular
fractures, debonding, breakage of the porous network etc.). Figure 1 schematically
shows this positive feedback process, whose stability is not guaranteed. Notice that
chemical softening is central for compaction banding in the absence of other
softening mechanisms such as mechanical softening.

A two-scale approach was proposed in [1] to model this strongly coupled sys-
tem. In particular two scales are distinguished in this model. The first one is the
micro-scale, where the reaction kinetics and the variation of the specific surface of
the solid skeleton constituents due to breakage are described. These quantities are
then upscaled to the macro-scopic scale (here defined as the scale of Representative
Volume Element—RVE), where the balance and constitutive equations are written.
Due to the heterogeneity of the microstructure (e.g. different grain sizes and con-
stituents in the RVE) the dissolution rate is not homogeneous over the RVE. The
size of the RVE is a finite statistical quantity that depends upon the geomaterial at
hand. The chemical softening rate of the yield surface is a macro-scopic quantity
that is related to the average, over the RVE, reaction rate at the grain level. This
average procedure (upscaling) naturally introduces a characteristic length (size of
the RVE). This approach is inspired from the development of non-local continuum
theories. Details of the analysis can be found in [1].

Acceleration of 
dissolution

Chemical 
Softening

Solid skeleton 
mechanical 

d

Increase of effective 
specific area of 

reactants

damage

Fig. 1 Positive feedback
process due to dissolution and
solid skeleton damage (e.g.
intergranular fracturing,
breakage of the porous
network, matrix cracking,
grain-matrix debonding etc.)
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2 Compaction Banding in Oedometric Compression

In the following we refer to the main results obtained in [1, 8] for oedometric com-
paction in a carbonate reservoir at 1.8 km depth because of CO2 injection. The set of
reactions that take place because of CO2 injection is of dissolution type. The condi-
tions for compaction band formation are derived mathematically and investigated in
the aforementioned papers. It is shown that there is a region in the q− p′ plane where
compaction band formation is possible. In other words in this region homogeneous
deformation is unstable and the system bifurcates to non-homogeneous solutions
corresponding to compaction banding. Figure 2d shows the instability zone for typ-
ical chemo-poro-mechanical parameters of the carbonate grainstone considered.
Inside the instability region there exists a minimum critical wavelength above which
perturbations are unstable (positive growth coefficient). This critical wavelength is
related to the thickness of the localization zone and is expressed as a function of the
characteristic internal length, ‘c. If ‘c =0 then the system is unstable for any pertur-
bation wave length and the compaction band degenerates to a mathematical plane, as
in the classical Cauchy continuum (local formulation).

Initially we assume that the material is in a state of elastic deformation (Point A,
Fig. 2d) under the applied total vertical stress (45 MPa). At time t=0, the injection
of the CO2 solution starts. It is assumed that the CO2 solution is continuously
renewed in such a way that practically open flow conditions hold. In field, CO2

Fig. 2 Evolution in time of a deformation, b the specific surface, c the chemical softening
parameter and d of the stress path during imposed homogeneous dissolution of a specimen under
oedometric conditions
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injection open flow conditions would correspond to a zone outside the gas plume,
where the formation fluid is saturated with CO2, but is not in chemical equilibrium
with the rock so that carbonate dissolution occurs continuously. Rohmer and Seyedi
[9] show that the dissolution front in a reservoir might extend few kilometers
around the injection well after 10 years of continuous injection.

The material is progressively degraded due to chemical softening. When the
elastic domain envelope reaches point A the material yields, plastic strains are
accumulated and solid skeleton damage occurs. This phase of deformation under
constant applied loading (i.e. the overburden) corresponds to the creep behavior that
is observed due to CO2 injection [10–12] (see Fig. 2a–c). When the stress state
enters to the shaded area (Fig. 2d) homogeneous deformations become unstable and
compaction bands are possible.

We emphasize that the bifurcation analysis only gives the conditions for com-
paction band triggering. In order to assess the evolution of the system and the
gradual strain localization inside the band one has to study the post-bifurcation
regime. This was performed numerically [8]. When the system is left free to
develop non-homogeneous deformations, strain localization in the form of com-
paction bands can occur. At the beginning of CO2 injection, the system creeps from
point A to point B. No compaction band is triggered and the system behaves as in
the case of homogeneous deformation (Fig. 2). Once the stress path crosses the
shaded area, non-homogeneous deformations start to grow and a compaction band
forms. Figure 3 (left) shows the profile of the vertical deformation at various times.
The deformations localize into a narrow band whose thickness depends on the
characteristic internal length, ‘c. Here we chose ‘c =4mm (∼20 grains for a typical
grain size of 200 µm). In Fig. 3 (right) we present the average vertical (axial,
oedometric) deformation over the entire sample, the vertical deformation at the peak
of the compaction band and the vertical deformation of a point far from the
localization zone. The vertical deformation at the peak of the compaction band is 14
times larger than the vertical deformation far from it. A small initial perturbation
was introduced in the numerical system in order to trigger a compaction band in the

Fig. 3 Left Vertical deformation in function of time: at the peak of the compaction band, average
over the entire sample and at a point far from the localization zone. Right Profile of the vertical
deformation at various times

136 I. Stefanou and J. Sulem



www.manaraa.com

middle of the sample. Otherwise, tiny numerical errors would cause compaction
band triggering anywhere in the sample.

Figure 4 (left) shows the stress path of the point at the peak of the compaction
band and the stress path of a point far from the localization zone. In the beginning
the stress paths coincide, but after entering in the instability zone they start to
diverge due to compaction band formation. It is worth emphasizing that compaction
band thickness depends on the chosen characteristic length. This is shown math-
ematically in [1] and it is corroborated numerically by choosing a different char-
acteristic length, ‘c =16mm (∼80 grains) in Fig. 4 (right). Finally, the smoothness
of the peak of the compaction band is dictated by the internal length, ‘c.

3 Conclusions

A strong chemo-mechanical coupling was considered for studying the behavior of
rocks under chemically reactive fluids: the material softens in due course of dis-
solution mechanisms whereas the reaction accelerates with increasing damage
(because of the increase of the specific surface of the grain and thus of the area of
contact between the reactive fluid and the minerals). A two-scale approach has been
proposed in order to account for the heterogeneity of the dissolution process over
the RVE. This naturally introduces a ‘chemical’ material length related to the
non-local character of the relation between the softening rate of the yield surface (at
the macro-scale) and the dissolution process (at the grain scale, i.e. at the
micro-scale). The introduction of this material length is crucial to limit the com-
paction band thickness to a finite value.

Fig. 4 Left Stress paths of the point at the peak of the compaction band (ABC2) and of a point far
from the localization zone (ABC1). The dashed line corresponds to the stress path of the
homogeneous deformation (see Fig. 2d). Right Profile of the vertical deformation at various times
for ‘c =16mm (80 grains). The deformations localize into a band which is thicker than in the case
of ‘c =4mm (20 grains, see Fig. 3)
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Post-localization robust computations have been performed to simulate the
progressive evolution of compaction band under open flow conditions. It is shown
that even though the overall deformation creep does not change significantly,
compaction bands are formed locally, which can alter significantly the strength and
the permeability of a rock formation under injection of reactive fluids.
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Unstable Creeping in Geomaterials

Claudio di Prisco and Federico Pisanò

Abstract Time plays a dominant role in many areas of geomechanics, such as in
the assessment of landslide hazard and territorial vulnerability. In this context, the
reliable description of the temporal evolution of both soil mass movements and
their dependence on loading rate effects is deemed crucial. From a theoretical
standpoint, the time-dependent behaviour of geomaterials can be described by
means of viscoplastic constitutive theories, also beneficial to foster the objectivity
of numerical results from strain localisation simulations. However, not all the
aspects of viscoplastic modelling have been so far clearly acknowledged in the
literature. For this reason, in this paper the authors focus on creeping strain
localization phenomena under simple shear conditions, discussing, from a theo-
retical point of view, the mechanical condition to be satisfied for tertiary creep to
occur.

1 Introduction

Traditionally, time effects have received less attention in the study of strain locali-
sation problems, although they can affect significantly both triggering and evolution
of many geohazards. The present paper aims at highlighting theoretically the
influence of both viscosity and loading rate on the strain localization of geomaterils.
A suitable tool to investigate time effects in geomaterials is the well-known theory of
viscoplasicity, based on the concept of “delayed plastic flow”. From a physical
standpoint, delayed plasticity embodies in constitutive equations the micro-inertiae
of soil particles (in the case of granular materials), as well as irreversible phenomena
occurring at the contacts between grains (grain damage induced by indentation,
grain crushing, etc.). The approaches available to model the rate-dependency in
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geomaterials can be classified in two major groups: those allowing the stress state to
lie outside the yield surface [1, 2] and those relying on time- or rate-dependent
hardening rules (e.g. consistency viscoplasticity—[3–6]). Here, the first-type
approach proposed by Perzyna is considered for two reasons: (i) it has been
proved successful in capturing the rate-dependence of both fine- and coarse-grained
soils [7–10]; (ii) it enables a straightforward convergence to rate-independent
elastoplasticity in presence of slow loading processes. Further, viscoplastic models
not only enable to capture certain experimental evidences, but also work as a simple
regularization technique in the continuum-based simulation of strain localisation [3,
11–13].

In this paper, the interplay of material rate-dependence (viscosity) and loading
rate in shear strain localisation problems is critically discussed. In particular, the
authors put in evidence, from a theoretical point of view, the equivalence between
the theoretical conditions for strain localisation in elasto-plastic solids and
unstable/tertiary creep in rate-sensitive materials. The analysis is developed in the
framework of the “theory of controllability” and applied to one-dimensional slope
stability problems.

2 Theory of Viscoplasticity

Standard Perzyna’s viscoplasticity—Perzyna’s viscoplastic theory relies upon the
assumption of additive reversible (elastic) and unrecoverable (viscoplastic) strain
rates. In this framework, viscoplastic strain rates are obtained as [1]:

ε ̇vp =Φðf Þ ∂g
∂σ

ð1Þ

According to Eq. (1), the scalar Φ function (the so-called “viscous nucleus”)
determines the magnitude of the viscoplastic strain rate tensor, while its direction in
the strain rate space is given by the stress gradient of the plastic potential function g.
The viscous nucleus function is most commonly assumed to be bilinear and gov-
erned by the fluidity parameter. As no plastic consistency needs to be enforced, the
stress state is not constrained to lie on the yield locus during plastic loading stages
(whence the term “overstress plasticity”). While the viscous nucleus Φ must be a
non-negative non-decreasing function of the yield function f, rate-independent
plasticity is recovered as the limit of viscoplasticity at vanishing rate-sensitiveness
(or infinitely slow loading). It could also be proven that Φ → ∞ (infinite plastic
strain rate) and f → 0 (consistency satisfied) as the elasto-plastic limit is approa-
ched. Although different formulations are possible, it could be proven that bilinear
definition for Φ, imposing Φ = 0 for f ≤ 0, ensures a viscoplastic response tending
to the elasto-plastic limit at vanishing rate-sensitiveness.
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In general, we have also to state that, when strain localization is concerned:

• material internal length and characteristic time should both be present in the
continuum analysis of geomechanical problems;

• depending on the type of material and loading conditions, the micro-mechanical
processes underlying the occurrence of strain localisation are governed by the
competitive interplay of spatial and temporal factors;

• in non-local models for geomaterials the relationship between material
micro-structure and localisation thickness can be well-defined through non-local
material parameters, whereas, when the time factor is also considered via vis-
coplastic modelling, the material response (and the shear band thickness) is
affected by at least three factors at the same time: (i) the analytical definitions of
both the yield function and the viscous nucleus, (ii) the values of the calibrated
viscous parameters, (iii) the loading rate;

• even in presence of viscoplastic laws, the common lack of non-local enhance-
ment implies the vanishing of the simulated shear band thickness as the loading
rate tends to zero—regardless of the viscous nucleus definition.

3 Stability Analysis for Viscoplastic Constitutive Laws

The relation between strain localisation in elastic-plastic media and tertiary creep in
elastic visco-plastic continua is theoretically discussed in what follows. For this
purpose, the authors resort to the so-called “theory of controllability” [14], origi-
nally introduced by Nova et al. [15] to analyse the constitutive response of single
potential elastoplastic relationships. Nova’s work has been recently reinterpreted in
the light of the Hill’s stability criterion [16], and extended by this paper’s authors to
cope with elasto-viscoplastic materials under general loading programmes [17].
A practical application of the viscoplastic controllability theory to the analysis of
creep-induced liquefaction in very loose sands is reported in [18]. The same theory
is employed hereafter to investigate the inception of tertiary creeps under simple
shear (SS) loading conditions, idealising the mechanics of very elongated soil layers
(infinite slopes). The stability analysis of ideal infinite slopes is interesting in many
theoretical respects. The intrinsic symmetric/kinematic features of the system imply
that localisation failure may only occurs in the form of a shear band oriented along
the sloping direction (Fig. 1).

As was first discussed in [19] and then in [20], localisation/instability under SS
conditions takes place when:

D11D44 −D14D41 < 0 ð2Þ

where D11, D44, D14 and D41 are entries of the incremental elasto-plastic stiffness
matrix (subscripts 1 and 4 identify direct stress/strain components normal to the
sloping direction and shear components along the slope, respectively). In the case of
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single potential elasto-plastic materials, inequality (2) can be proven to correspond
to the following condition on the hardening modulus H:

H <HL = −Del
44

∂f
∂σ2

∂g
∂σ2

ð3Þ

where σ2 is the along-slope normal stress, HL the instability index defined in [16]
and evaluated under SS conditions, D44 the elastic shear stiffness, f and g the yield
function and the plastic potential, respectively. In [20] the implications of
non-associativeness are considered in detail and it is shown that, even in case of
perfect plasticity (i.e. H = 0), inequality (3) may be fulfilled under certain condi-

tions. In particular, when H = 0, loaclization takes place when either
∂g
∂σ2

or
∂f
∂σ2

are

positive.
Pisanò and di Prisco [17] extended to most general loading conditions the

concept of tertiary creep and demonstrated that, in the case of creep tests, vis-
coplastic instability stems from the positiveness of at least one eigenvalue in the
following matrix’s spectrum:

A=
Aαα Aαβ
Aβα Aββ

� �
, ð4Þ

where under SS conditions the single terms become:

Aαα = −
∂Φ
∂f

H −HLð ÞIαα ð5Þ

Aββ = −
∂Φ
∂f

H −HLð ÞIββ −ΦD22
∂
2g

∂
2σββ

ð6Þ

Fig. 1 Geometrical sketch of
the infinite slope idealisation
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Aβα =0 ð7Þ

Aαβ =Φ
∂
2g

∂σα⊗∂σβ
−CαβC − 1

ββ

∂
2g

∂σβ⊗∂σβ

� �
ð8Þ

in which subscripts α and β indicate controlled stress and strain components (in the
case here considered α=1, 4, whereas β=2, 3) respectively. In fact, normal and
shear stresses are controlled, whereas along the slope and out- of-plane normal
strains are imposed to be nil. Moreover, Cel is the elastic compliance matrix (Cαβ

the partition implied by the specific loading programme), whereas Iββ and Iαα are
identity matrices and D22 stands for the along the slope elastic stiffness.

In Eqs. (5) and (6) the derivative of the viscous nucleus with respect to the yield
function is positive by definition, and positive is also the second derivative of the
plastic potential with respect to the stress tensor because of its convexity. Thus,
Eqs. (5) and (6) impliy that (i) instability takes place when H =HL and (ii) de-
pending on the current Φ value, the relevant shear strain component accelerates
either almost simultaneously or much before than the acceleration of the stresses
along the tangential and the out of plane directions, since the second term right of
Eq. (6) is strictly negative. It is worth noting that the localisation condition for
elasto-plastic constitutive relationships coincides with the condition for unstable
creep in rate-sensitive materials. Nevertheless, this by no means implies that
instability is expected at the same stress level in the two situations. In fact, both H
and HL in the elasto-viscoplastic case are largely influenced by the time factor, that
is by the previous loading and loading rate history.

4 Concluding Remarks

In this paper, the relation between viscoplasticity and strain localisation in
geo-materials has been tackled by considering creeping phenomena under simple
shear conditions. The use of elasto-viscoplastic constitutive relationships enables
the analysis of time effects in localisation processes. For this purpose, Perzyna-type
viscoplastic models have been exclusively considered due to their wide popularity
in literature and in numerical applications. According to Perzyna’s approach, the
increment in irreversible strains is governed by the viscous nucleus, which is a
function of the yield function and whose definition deeply affects the mechanical
response of the material and the inception of instability/localisation.

Under simple shear conditions, the authors have demonstrated the coincidence of
the condition for localization to occur, valid for elastic-plastic single potential
media, with the condition for unstable creep in viscoplastic Perzyna’s type materials
to take place.
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Although the two conditions are perfectly coincident, both the previous loading
rate and the fluidity parameter (or, alternatively, the viscous nucleus definition)
severely affects quantitatively the mechanical response of the system, since all the
variablesgoverning the instability occurrence (both the current hardening modulus
and the instability index) vary with time and are influenced by the rate sensitiveness
of the constitutive rule. In particular, this analysis justifies the transition, during the
evolution of time, from a stable to an unstable creep response, even in a system
where, from a macroscopic point of view, any spatial evolution of the damaged
zone is absent.
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The Effect of Rotational and Isotropic
Hardening on the Onset of Compaction
Bands

Chara Prassa, Sotiris Alevizos, Manolis Veveakis
and Yannis F. Dafalias

Abstract Compaction bands are localized failure patterns that appear in highly
porous rock material under the effect of relatively high confining pressure. Being
affected mainly by volumetric compression, these bands appear to be almost per-
pendicular to the most compressive principal stress at a stress state at the so-called
“cap” of the yield surface (Issen and Rudnicki, J Geoph Res 105:21529–21536
(2000) [4]). In this study we focus on the mechanism that leads to the onset of
compaction bands by using a viscoplasticity model able to describe the
post-localization response of these materials. The proposed constitutive framework
is based on the overstress theory of Perzyna (Adv Appl Mech 9:243–377 (1966)
[7]) and the anisotropic clay plasticity model of Dafalias (Mech Res Commun 13
(6):341–347 (1986) [1]) as modified by Dafalias and Taiebat (Geotechnique 63
(16):1406–1418 (2013) [2]) which provides not only the necessary “cap” of the
yield surface, but introduces a rotational hardening mechanism thus taking into
account possible anisotropic phenomena. Following the analysis of Veveakis and
Regenauer-Lieb (J Mech Phys Solids 78:231–248 (2015) [8]) we identify the
compaction bands as “static” cnoidal wave formations in the medium that occur at a
post-yield regime and we study the effect of rotational and isotropic hardening on
their onset. Moreover, we determine a theoretical lower limit of confining pressure
in triaxial compression tests for the compaction bands to develop.
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1 Introduction

It is widely recognized that soft rocks display a highly viscous behavior. It is also
well known that soft rocks with high porosity succumb to volumetric compression
with the development of the so called compaction bands. Compaction bands are
planar deformation zones that are oriented perpendicular to the maximum com-
pressible principal stress. Such bands were first observed in the field by Mollema
and Antonellini [5] in natural outcrops of sandstone. Oka et al. [6] performed
conventional drained triaxial experiments on diatomaceous mudstone and observed
that material fails by the formation of either shear bands and/or compaction bands,
depending on the confining pressure under which the material is tested. Compaction
band formation has been observed by increasing the confining pressure. An inter-
esting finding is that compaction bands in contrast to shear bands are not solitary,
but periodic. Issen and Rudnicki [4] admit solutions for compaction bands when the
inelastic volumetric deformation is compactive and is associated with a ‘cap’ on the
yield surface. In this study, the formation of compaction bands in highly porous
rock material is demonstrated by applying an extension of the anisotropic clay
plasticity model of Dafalias and Taiebat [2] to an overstress type of viscoplasticity.
This model is suitable for the ensuing analysis because it combines the ‘cap’
property of a yield surface with the concept of anisotropy. More precisely, since we
focus on the behavior of natural soil samples, we assume that the material exhibits a
pre-existing anisotropy expressed by a rotated yield surface in stress space, which
subsequently can evolve by rotational hardening as the anisotropy evolves during
loading. This evolution could explain the observed sharp transition in the localized
failure mode from shear bands to compaction bands with the increase of confining
pressure. The high viscosity of soft rock is accounted for by adopting an overstress
approach based on the concept of Perzyna’s overstress theory in conjunction with
the yield surface of Dafalias and Taiebat [2]. The viscoplastic constitutive frame-
work was adopted in order to describe the post-localization response of the material.

2 Constitutive Modeling

The anisotropic clay plasticity model of Dafalias and Taiebat [2] (part of SANI-
CLAY family) is extended to become viscoplastic of an overstress type. It addresses
anisotropy due to fabric orientation of the particulate medium by introducing α,
which is a dimensionless deviatoric stress-ratio-type tensor-valued variable defining
the rotation of Plastic Potential Surface (PPS)/Yield Surface (YS), and whose
evolution is defined by the adopted Rotational Hardening (RH) rule. The analysis is
made for associative flow rule. The multiaxial stress space expression of SANI-
CLAY PPS/YS is given by
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f = g=
3
2

s− pαð Þ: s− pαð Þ− M2 −
3
2
α:α

� �
p p0 − pð Þ=0 ð1Þ

where M is the critical state stress ratio (possibly a function of Lode angle), s is the
deviatoric part of the stress σ and p0 in triaxial space is the p-coordinate of the
intersection of the line with slope α and the YS, defining its size.

The additive decomposition of total strain-rate into elastic and viscoplastic parts
is assumed such that ε ̇= ε ̇e + εv̇p, where a superposed dot implies the rate. The
hypo-elastic strain and stress rate relations are given in terms of an elastic bulk
modulus K and shear modulus G (obtained from K and Poisson’s ratio ν), by
εėq = q ̇ ̸3G, εėv = p ̇ ̸K. The viscoplastic model is derived from the well-known
Perzyna’s overstress theory [7] by assuming a YS that hardens, while the vis-
coplastic flow rule is given by a function of the overstress that represents the
distance between the actual stress state (p, q) and the YS, measured perpendicularly
to it (shortest distance), as shown in Fig. 1 in the triaxial p, q space. The adopted
viscoplastic model introduces an original suggestion by proposing to use the two
components of the aforementioned distance along p and q axes, as two separate
overstress measures to be used for volumetric and deviatoric plastic strain rates,
respectively, and define the corresponding overstress functions by:

Φ1 =
p− pY
pn

� �N

,Φ2 =
q− qY
qn

� �N

ð2Þ

where pY, qY are shown in Fig. 1 and represent the yield values of p and q re-
spectively, and pn, qn are reference stresses. The power N of Eq. (4) defines the
order of the Perzyna viscoplasticity and is assumed to be equal to N = 3. Hence, the
viscoplastic flow rule yields the following expressions for the volumetric and
deviatoric plastic strain rates in conjunction with Eq. (1) expressed in triaxial space:

ε ̇vpv = μH f *
� �

Φ1
∂g
∂p

= μH f *
� � p

pn

� �3

pγ M2 − η2
� � ð3aÞ

Fig. 1 Schematic diagram of
minimum distance of actual
stress state from the static
yield surface
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ε ̇vpq = μH f *
� �

Φ2
∂g
∂q

= μH f *
� � q

qn

� �3

2pγ η− αð Þ ð3bÞ

where η = q/p and μ is the viscosity parameter. In this formulation, p= p− py,
q= q− qy are the volumetric and the deviatoric components of the overstress and
f *ð Þ= 3

2 s− pαð Þ: s− pαð Þ− M2 − 3
2α:α

� 	
p p0 − pð Þ which is the left hand side of

Eq. (1), while H is the Heaviside step function that is defined as:

H nð Þ= 0, n≤ 0
1, n>0



ð4Þ

3 Method of Analysis

The post-localization response is described using the concept of viscoplasticity in
order to regularize the equations. The stress equilibrium equations along with a
simple power-law-type of overstress function are used in conjunction with the mass
balance law following the analysis of Veveakis and Regenauer-Lieb [8].

3.1 Momentum Balance

The equilibrium equations in a 2-D plane strain setting are:

∂σxx
∂x

+
∂σyx
∂y

=0 ð5aÞ

∂σyy
∂y

+
∂σxy
∂x

=0 ð5bÞ

where a 2-D plane strain setting is assumed.
The Levy [3] transformation gives through the Mohr circle the relation between

p, q, θ and the biaxial stresses as

σxx = p+ qsin 2θ, σyy = p− qsin 2θ, σxy = σyx = qcos 2θ ð6Þ

where θ is the angle of the slip lines with respect to the principal stresses,
p= 1 ̸2ð Þ σxx + σyy

� �
and q= σxy ̸cos 2θ are biaxial stresses.
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3.2 Mass Balance

The total mass balance expression for any material allowing internal mass transfer
is written as Veveakis and Regenauer-Lieb [8]

1
K 0

∂p
∂t

=Deff
∂
2p
∂x2

+
∂
2p
∂y2

� �
− ε ̇n

p
pn

� �3

ð7Þ

where pn and ε ̇n = μpΥ M2 − η2
� �

are the boundary values for the applied overstress
and volumetric strain rate, respectively. Furthermore, 1/K’ = 1/K + βm, and
βm = 1−φð Þβα +φβb whereas, Deff = φβφD is a generalized mass flow diffusivity,
with units [m2/Pa.s], with D the diffusion coefficient, representing any internal mass
exchange process.

3.3 Generalized Slip-Line Field Theory

The equilibrium Eqs. (5a) and (5b) must first be solved using the adopted YS and
acquiring the general form q = qY(p), in order to determine the slip lines of the
problem at hand which correspond to the directions where localized failure could
occur [3]. If we assume that the initial YS does not harden, then the characteristics
of the corresponding system quasi-linear set of p.d.e’s (5a) and (5b) are,

h
ffiffiffiffiffiffiffiffiffiffiffiffi
1− h2

p
cos 2θ− − 1+ h2ð Þsin 2θ

h+ sin 2θ
p− 2

hcos 2θ+
ffiffiffiffiffiffiffiffiffiffiffiffi
1− h2

p
sin 2θ

h+ sin 2θ
qθ=0 ð8aÞ

sin 2θ− h
ffiffiffiffiffiffiffiffiffiffiffiffi
1− h2

p
cos 2θ+ hsin 2θ

� 
h+ sin 2θ

p+2
− hcos 2θ+

ffiffiffiffiffiffiffiffiffiffiffiffi
1− h2

p
sin 2θ

h+ sin 2θ
qθ=0 ð8bÞ

where h = qY’(p) being a generalized pressure modulus, which is equal to the slope
of the tangent to the yield surface. Notice that this system is hyperbolic if it has two
real characteristic directions and turns into parabolic if there is one such direction.
The latter corresponds to the limit hj j→ 1. We identify this limit as the one where
pure compaction (h= − 1) or pure dilation (h=1) bands are formed.

3.4 Results

The mass balance equation (Eq. 7) was solved along the characteristics of the
system, where yield occurs. Introducing the appropriate wave normalization, we
have determined analytically the expressions for the minimum reference length for
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the development of one set of compaction bands in terms of the tensor of anisotropy
and the isotropic hardening. Our main finding is that higher anisotropy and isotropic
hardening can promote the growth of compaction bands (Fig. 2).

4 Conclusions

Using the concept of overstress theory we developed a viscoplastic constitutive
framework based on and the yield surface of Dafalias [1] and Dafalias and Taiebat
[2]. Following the analysis of Veveakis and Regenauer-Lieb [8] we examined the
effect of rotational and isotropic hardening on the onset of compaction bands within
the foregoing constitutive setting.
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Localisation of Deformation for Shearing
of a Fault Gouge with Cosserat
Microstructure and Different Couplings

H. Rattez, I. Stefanou, J. Sulem, M. Veveakis and T. Poulet

Abstract In this paper, we show the impact of Thermo-Hydro Mechanical

couplings (THM) on the stability of a saturated fault gouge under shear. By resorting

to Cosserat continuum mechanics, that allows to take into account rotational degrees

of freedom, we regularize the problem of localisation and we predict the thickness

of a shear band. A linear stability analysis of the homogeneous state is performed

and then the system of equations is integrated using a Finite Element (FE) analysis.

These analyses can be used for studying the evolution of the thickness of the prin-

cipal slip zone in a fault under undrained adiabatic shear. Good agreement is found

between theoretical predictions and field observations.

1 Introduction

Shear banding is one of the major modes of failure in geomaterials. In particular, it

is observed during catastrophic landslides [9] and seismic faults [6] involving mech-

anisms that occur at several length and time scales. Field observations attest that

the width of the band where the shear deformation localizes is narrow, i.e. of mil-

limetric scale or even thinner. Strain localization in narrow bands can be seen as a

bifurcation from the homogeneous deformation solution of the underlying mathe-

matical problem, which is favoured by softening behaviour. Mechanical processes

(e.g. grain crushing, reduction of internal friction etc.), thermal effects, chemi-

cal reactions (e.g. dissolution, dehydration etc.) can induce a softening behaviour.
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During seismic slip, a large amount of the accumulated deformation energy is con-

verted into heat. Therefore thermal weakening effects are expected to be crucial.

Here we present a model for the shearing of a saturated fault gouge under

THM couplings [8]. Cosserat theory is used for the mathematical description of the

mechanical behaviour of the gouge. It allows to regularize the underlying mathemat-

ical problem in the softening regime. Cosserat theory is particularly interesting as it

can explicitly take into account the granular size.

Adopting an elastoplastic constitutive model for the Cosserat continuum, a linear

stability analysis of the homogeneous state of deformation is conducted. The math-

ematical system is then integrated numerically in order to study the post-bifurcation

regime of the problem [4]. The numerical simulations are performed using the FE

code called Redback [5]. The numerical analyses permit to verify and to complete

the theoretical predictions [8] in the post-bifurcation regime for a fault gouge under

THM couplings.

2 Equations of the Model

A Cosserat continuum takes into account six degrees of freedom, i.e. three trans-

lations ui and three rotations 𝜔
c
i , at each point. For the strain tensor 𝛾ij—which is

split into its symmetric 𝜀ij and antisymmetric part 𝛾[ij]—and the curvature tensor 𝜅ij
a decomposition into an elastic and a plastic part is assumed.

𝛾ij = 𝛾
e
ij + 𝛾

p
ij and 𝜅ij = 𝜅

e
ij + 𝜅

p
ij (1)

The stress tensor 𝜏ij is non symmetric in general and is also divided into symmetric

𝜎ij and antisymmetric part 𝜏[ij]. A couple-stress tensor 𝜇ij is introduced which is dual

in energy with the curvature 𝜅ij.

The momentum balance equations can be written as follow:

𝜏ij,j − 𝜌

𝜕
2ui
𝜕t2

= 0 (2)

𝜇ij,j − eijk 𝜏jk − 𝜌I
𝜕
2
𝜔
c
i

𝜕t2
= 0 (3)

where eijk is the Levi-Civita symbol, 𝜌 is the mass density and I is the micro-inertia.

By assuming that all the mechanical plastic work is converted into heat and that

the heat flux is expressed through Fourier’s law, we obtain the following diffusion

equation for the temperature T:

𝜌C(𝜕T
𝜕t

− cthT,ii) = 𝜎ij�̇�
p
ij + 𝜏[ij]�̇�

p
[ij] + 𝜇ij�̇�

p
ij (4)
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where cth is the thermal diffusivity and 𝜌C is the specific heat per unit volume of the

material.

The diffusion equation for the pore pressure p is obtained from the fluid mass

balance equation:

𝜕p
𝜕t

= chy p,ii + 𝛬

𝜕T
𝜕t

− 1
𝛽
∗
𝜕np
𝜕t

(5)

where chy is the hydraulic diffusivity, 𝛽
∗

is the storage capacity, 𝛬 is the undrained

thermal pressurization coefficient and np is the inelastic porosity change.

Thermal pore fluid pressurization is a destabilizing mechanism as it results in a

significant decrease of the effective mean stress and consequently to the reduction

of the shear strength. The effective stress tensor is linked to the total stress tensor by

𝜏
′
ij = 𝜏ij + p𝛿ij.

3 Bifurcation Analysis

Let us consider the problem of undrained adiabatic shearing of an infinite layer as

described in Fig. 1. This problem presents an homogeneous solution in terms of

stresses, strains, pressure and temperature.

We are interested in determining the conditions for which the above homoge-

neous solutions become unstable in the Lyapunov sense. The constitutive equa-

tions are based on the Muhlhaus-Vardoulakis model [3] which uses a generalized

Drucker-Prager yield surface. A non associated plastic flow rule and strain harden-

ing/softening is considered. All equations are linearised at the homogeneous state

and we study the evolution in time of a small perturbation.

We assume a clayey gouge at 7 Km depth. The values of the different parame-

ters are retrieved from [6, 8]. In particular, we consider no dilatancy of the medium.

The critical value of the plastic hardening modulus for which homogeneous shear

becomes unstable is Hcr = 2 MPa considering THM couplings (Fig. 2b). Note that

in absence of thermal effects, the critical hardening modulus is zero. Thermal pore

fluid pressurization leads to instability in the hardening regime. Nevertheless if we

consider a contractant medium (negative dilatancy), Hcr becomes positive with HM

couplings due to the pressurization of the pore fluid. For example if dilatancy coef-

ficient is 0.01, Hcr = 133 MPa.

Fig. 1 Boundary conditions

for the infinite sheared layer

modelling a gouge. 𝜏n is the

normal stress imposed and V

is the shearing velocity
h

yx

xy

ux

ux=-V.t

=0yyux=0 =-

uy=0

uy
p,T

p,y=T,y=0

p,y=T,y=0

n



www.manaraa.com

158 H. Rattez et al.

Re(s) (s-1)

R200 400 600 800 1000 1200

0.4

0.2

0.2

0.4

Hs (MPa)

(a) (b)

Fig. 2 a Real part of the exponential growth (s) of the perturbation as a function of the wavelength

(𝜆) of the perturbation for a zero dilatancy coefficient (𝛽 = 0) and Hs = 1.5MPa. The dashed lines
represent the s that presents a nonzero imaginary part. b Thickness of the shear band as a function

of the hardening modulus considering THM couplings or the Hydro-Mechanical (HM) couplings

only

Range of band
width observed

(a) (b)

Fig. 3 Evolution of the shear band thickness with deformations compared with field observations

(left) effect of grain cataclasis on the shear band size (right)

The onset of instability corresponds to an infinite wavelength (diffuse instabil-

ity). Past this state, strain localizes rapidly in a band with a thickness controlled by

a particular wavelength of the instability mode. This selected wavelength (𝜆) corre-

sponds to the maximum growth coefficient (s) of the perturbation and is finite in the

post-localisation regime when considering a Cosserat framework (Fig. 2a).

We plot in Fig. 3a, the evolution of the shear band thickness in terms of the hard-

ening modulus. The values obtained with no dilatancy show a good agreement with

field observations described in [6]. Note that for a contractant medium, the shear

band thickness is much smaller (Fig. 2b).

At high mean stresses, like for faults at great depth, grain crushing is observed

from exhumed samples and also in experiments. The introduction of a characteristic

length related to the mean grain size in the Cosserat continuum enables to take into

account the grain size evolution [1]. Assuming an empirical grain size reduction

law during strain localisation D(𝛾xy) = (D0 − Df )e
− 𝛾xy

𝛾c + Df ; (where D0, Df are the
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Fig. 4 Results of numerical analyses for HM couplings with Hs = −4MPa and a dilatancy coef-

ficient of −0.01 (contractant) for h = 50µm. a Rate of plastic strain increase (�̇�
p
) as a function of

the height of the layer, centered in zero, for different meshes. b Cosserat rotation around the z-axis

initial and final mean grain size respectively and 𝛾c is a coefficient). The evolution

of the shear band thickness is shown in Fig. 3b. Grain crushing leads to a shear band

thickness reduction.

4 Numerical Simulation

The full system of equations is integrated numerically using a displacement-rotation

incremental finite element formulation [2]. The integration in time is implicit using

the solver provided by Redback [5] (Moose framework). In Fig. 4, the results of the

simulation considering HM couplings are shown. The shear band thickness does not

depend on the mesh size (Fig. 4a) and is in good agreement with the one predicted

by the bifurcation analysis (Fig. 2b in black).

5 Conclusion

Energy dissipation and shear strain localisation in a fault gouge are of major impor-

tance. The shear band thickness is determined by various parameters and phenom-

ena. Both rate dependent effects and the size of the microstructure (e.g. grain size)

determine the shear band thickness [7]. Here rate effects are taken into account indi-

rectly through the THM couplings, i.e. through the energy and mass balance equa-

tions. Cosserat continuum enables to upscale characteristic lengths to the macroscale.

These internal lengths correspond here to the grain size of the gouge [3]. Bifurcation

analysis shows the conditions for shear strain localisation that depend on different

couplings.
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The introduction of an internal length in Cosserat mechanics enables us to inves-

tigate the evolution of the shear band thickness in a fault and the effect of grain cata-

clasis. We show that the shear band size evolves with the hardening modulus, which

encapsulates and upscales various microstructural phenomena. Moreover, consid-

eration of the THM couplings seems of paramount importance as it modifies the

stability of the system and also the shear band width.

The numerical analyses allow to verify analytical findings and permit to trace the

post-peak regime. We found a good agreement with the size of the principal slip

zone observed in experiments and from outcrops [6].
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Multiscale Poromechanics: Fluid Flow, Solid
Deformation, and Anisotropic Plasticity

Ronaldo I. Borja, Shabnam J. Semnani and Jinhyun Choo

Abstract Natural geomaterials such as fissured rocks and aggregated soils often

exhibit pore size distributions with two dominant porosity scales. In fractured rocks

the dominant porosities are those of the fractures and rock matrix, whereas in aggre-

gated soils the micropores and macropores comprise the two relevant porosity scales.

When infiltrated with fluids this type of materials may also exhibit two permeability

scales. In this paper we present a framework for so-called ‘dual porosity-dual per-

meability’ materials that covers both steady-state and transient fluid flow responses.

The formulation revolves around a thermodynamically consistent effective stress pre-

viously developed for porous media exhibiting two porosity scales. Apart from the

aspect of multiscale poromechanics, some geomaterials such as shale also exhibit

pronounced anisotropy in their mechanical behavior due to the presence of distinct

bedding planes. A transversely isotropic constitutive model is appropriate for this

type of material behavior. Anisotropic plasticity models can easily be integrated into

the aforementioned dual porosity-dual permeability framework.

1 Introduction

Many natural geomaterials such as fissured rocks and aggregated soils exhibit pore

size distributions with two dominant scales of porosity. They are characterized as

dual porosity-dual permeability materials, or materials with ‘double porosity’ for
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short. Some geomaterials also exhibit pronounced anisotropy in their hydromechan-

ical behavior. An example is shale, a fine-grained sedimentary rock with a generally

anisotropic fabric associated with the parallel alignment of clay particles preferen-

tially oriented in the direction of the bedding plane. Anisotropy in fabric is generally

attributed to deposition, compaction, and/or diagenetic processes.

In this paper we summarize the important features of a recently developed hydro-

mechanical framework for materials exhibiting double porosity. The formulation

revolves around the notion of effective stress introduced by Borja and Koliji [1] for

porous materials with double porosity, which was subsequently integrated into a for-

mulation for solving general boundary-value problems in multiscale poromechanics

by Borja and Choo [2] and Choo et al. [3]. We note that the framework is suffi-

ciently robust to accommodate anisotropy in the mechanical response. To this end,

we recall the model of Semnani et al. [4] for transversely isotropic materials as a pos-

sible constitutive theory that can be integrated into the proposed dual porosity-dual

permeability framework.

2 Two-Scale Poromechanics

For a solid matrix with double porosity and infiltrated with liquid and gas, Borja and

Koliji [1] derived an expression for the effective stress of the form

�̄�ij = 𝜎ij + Bp̄𝛿ij , (1)

where 𝜎ij is the total Cauchy stress tensor, B is the Biot coefficient, p̄ is the mean fluid

pressure weighted according to the local degrees of saturation and pore fractions, and

𝛿ij is the Kronecker delta. Choo et al. [3] used this expression for hydromechanical

modeling of unsaturated flow in double porosity media, whereas Borja and Choo [2]

presented a specialization of the theory for fully saturated aggregated soils to accom-

modate an evolving internal structure.

For fully saturated media, conservation of linear momentum takes the form

𝜎ij,i + 𝜌gj = c
[
(̃vm)j − (̃vM)j

]
, (2)

where gj is the gravity acceleration component in the j direction, 𝜌 is the total mass

density of the mixture, ṽm and ṽM are the relative fluid velocities in the finer-scale and

coarser-scale porosities, respectively, and c is a mass transfer term. Note that even in

the quasi-static regime the right-hand side of the above equation is not zero due to

the transfer of fluid mass. The linear momentum balance explicitly couples the solid

displacement field with the fluid pressures in the finer-scale and coarser-scale porosi-

ties. Constitutive laws are necessary to close the boundary-value problem, see [2, 3].

In the following section we focus on the constitutive law for the mechanical defor-

mation response of the solid matrix.
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3 Anisotropic Plasticity

The idea behind the anisotropic constitutive formulation is to project the real stress

space into an alternative stress space through a projection operator that captures

transverse isotropy. To this end, we let 𝓵1, 𝓵2, and 𝓵3 denote three mutually orthog-

onal unit vectors such that 𝓵1 coincides with the axis of symmetry and 𝓵2 and 𝓵3
lie on the plane of isotropy. The physical analog to shale would be that 𝓵1 is the unit

vector normal to the bedding plane. The microstructure tensor is then defined as

𝝓 = 𝓵1 ⊗ 𝓵1 . (3)

Consider now the projection of the effective real Cauchy stress tensor �̄�kl to an

alternative stress configuration �̄�

∗
ij of the form

�̄�

∗
ij = ℙijkl�̄�kl , (4)

where

ℙijkl =
c1
2
(
𝛿ik𝛿jl + 𝛿il𝛿jk

)

+
c2
2
(
𝜙ik𝜙jl + 𝜙il𝜙jk

)

+
c3
4
(
𝛿ik𝜙jl + 𝛿il𝜙jk + 𝜙ik𝛿jl + 𝜙il𝛿jk

)
(5)

is the projector operator and 𝛿ij is the Kronecker delta.

When the coordinate system is aligned with the bedding planes, the projection

operation is given by the matrix equation

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�̄�

∗
11

�̄�

∗
22

�̄�

∗
33

�̄�

∗
23

�̄�

∗
13

�̄�

∗
12

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

𝛼

𝛽

𝛽

𝛽

𝛾

𝛾

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�̄�11
�̄�22
�̄�33
�̄�23
�̄�13
�̄�12

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

, (6)

where 𝛼 = (c1 + c2 + c3), 𝛽 = c1, and 𝛾 = (c1 + c3∕2). Note that the stress compo-

nents are simply scaled by a diagonal matrix whose coefficients are chosen to pre-

serve material symmetry requirements.

One can use any isotropic plasticity model in the alternative stress space while

maintaining anisotropy in the real stress space. As an example, Fig. 1 shows the

ellipsoidal modified Cam-Clay plasticity model in real and alternative stress con-

figurations for various combinations of anisotropy parameters 𝛼 and 𝛽, with 𝛾 = 1.
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(b)(a)

(c)

Fig. 1 Transversely isotropic modified Cam-Clay model in: a real stress space with 𝛽 = 1; b real

stress space with 𝛼 = 1; and c alternative stress space

Semnani et al. [4] employed the plasticity model shown in Fig. 1 to capture the stress-

strain responses of highly anisotropic Tournemire shale subjected to triaxial com-

pression.

4 Closing Remarks

Anisotropy in the material fabric could impact not only the mechanical response but

also the fluid and transport properties. Preferentially aligned microfractures could

result not only in anisotropy in permeability but also in directional fluid mass trans-

fer between the pores of a dual porosity-dual permeability medium. Work is currently

underway to investigate these complex mechanisms within the multiscale porome-

chanics framework presented in this paper.
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Micromechanical Modelling of Suffusion:
Towards the Stability Analysis of Hydraulic
Structures

Antoine Wautier, Stéphane Bonelli and François Nicot

Abstract Suffusion is the most controversial of the process of internal erosion and

piping as there is a lack of microscopic understanding of the degradation processes

at stake in saturated soils subjected to an internal flow. Thanks to the use of a DEM-

PFV (Discrete Element Method—Pore-scale Finite Volume) approach, this study

addresses the fully coupled problem of the suffusion of a non cohesive granular

material. Eligible particles to grain detachment and grain transport are character-

ized from a micromechanical point of view thanks to the use of an enhanced force

chain definition and the definition of a pore network. A Representative Elementary

Volume with respect to the grain detachment and grain transport is then quantified.

1 Introduction

In various circumstances, permeable soils are subjected to internal flows which may

modify their microstructure and by consequence their overall hydraulic and mechani-

cal properties. At the microscale, this process consists in a rearrangement of particles

driven by three elementary mechanisms, namely the detachment of grains from the

granular skeleton, their transport through the pore network and possibly their reat-

tachment to the granular skeleton farther away. At a larger scale, this process results

in the selective erosion of the smallest particles of a soil and is referred to as suffusion

within the geomechanics community [1].
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Many criteria where proposed in order to assess the internal stability of a partic-

ular soil with respect to suffusion. However, there is still a lack of global approaches

able to assess suffusion susceptibility by considering in the meantime the soil

microstructure, its stress state and the hydraulic loading. To this respect, this paper

investigates the ability of a coupled DEM-PFV approach [2] to model the effect of an

internal flow on cohesionless soils modelled as a poly-dispersed assembly of spheres.

Thanks to the use of micromechanical tools based on the identification of chained

particles [6] combined with the computation of autocorrelation functions [4] and the

description of the pore space in terms of an oriented graph composed of pores and

constrictions [7], the occurrence of the elementary mechanisms responsible for suf-

fusion is explored and the length scales associated with grain detachment and grain

transport processes are quantified.

The micromechanical analysis performed in this paper uses a discrete element

method [3] implemented in YADE software [10]. Within this framework, a soil sam-

ple is modeled as a poly-disperse assembly of rigid spheres in interaction through

the classical elasto-frictional contact law implemented in YADE [10] with a Young

modulus of 325 MPa, a stiffness ratio of 0.42 and a friction angle of 35
◦
.

Bearing in mind that suffusion involves the transport of the smallest particles of

a soil, cubic assemblies of spheres are generated randomly with a uniform radius

distribution between rmin = 3.6 × 10−5 m and rmax = 10 rmin such that the smallest

particles are likely to be transported through the voids created by the largest ones

according to the Therzaghi filter rule: rmin ≪ 4 rmax.

Based on this grading, a dense cubic assembly of 10,000 particles with a void

index of 0.6 is generated thanks to the radius expansion technique [5]. Then this

initially isotropic sample is subjected to a drained triaxial test consisting under a

confining pressure of 100 kPa up to a vertical strain |𝜀zz| = 20%.

2 Grain Detachment Analysis

The microscale analysis of the grain detachment mechanism is underpinned by the

idea that the most detachable grains should also be the least stressed. As a result, the

grains of the sample presented in the previous section are divided into two groups

based on the force chain definition introduced in [6] according to on the following

three characteristics:

∙ Chained particles have a higher principal stress than the mean particle principal

stress;

∙ Their principal stress direction is aligned with the geometrical contact direction

(less than 45◦ deviation);

∙ Force chains are composed of at least three contacting particles.

Based on this definition, force chains can be identified for several strain values. A

typical visualization of the force chains can be seen in Fig. 1 in the initial and critical

states. At the beginning of the triaxial test, the force chains are distributed in an
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Fig. 1 Force chains

visualisation under an

isotropic confining pressure

of 100 kPa (a) and at the end

of the triaxial test (b)

(a) (b)

isotropic way which is consistent with the fact that no principal direction of loading

exists. Once the deviatoric loading is applied, the force chains tend to align in the

vertical direction of the macroscopic principal stress.

In the literature, suffusion susceptibility is often considered based on a partition

between fine and coarse particles according to a radius threshold. However, the abil-

ity of an internal flow to detach some particles should be preferentially linked to the

loading state of the grains. This can be assessed by considering the probability den-

sity that a particle of a given radius belongs to a force chain which is illustrated in

Fig. 2 in the initial configuration of Fig. 1.

Figure 2 shows that force chains are mainly composed of large particles. The dual

comment is that the finest particles are the least loaded ones and therefore the most

likely to be detached, provided that fluid forces are large enough. Fine particles are

also good candidates for being transported over large distances, which will be esti-

mated in Sect. 3. However, no sharp transition is visible in the probability densities

in Fig. 2. As a result, no clear radius threshold exists between the loose particles of a

granular assembly and the primary fabric responsible for stress transmission which

is consistent with recent findings [8].

(a) (b)

Fig. 2 Probability density for a grain of a given radius to be part of a force chain at 𝜀zz = 0% (a).

Strain evolution of the autocorrelation lengths during the triaxial test (b)
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If the previous result gives some information about the geometrical characteris-

tics of the chained particles, it does not give any information on the spatial distrib-

ution of force chains. By considering the two-point spatial autocorrelation function

between the chained particles, a length scale associated with the detachment process

can be introduced as a typical distance between grains transmitting stresses through

the granular assembly. The two-point spatial autocorrelation function C is defined

for any vector h = (hx, hy, hz) as the joint probability that a point x and the translated

point x + h simultaneously belong to the domain 𝛺 occupied by chained particles:

C ∶
{

ℝ3 ↦ ℝ
h ↦ ℙ{x ∈ 𝛺 ∩ x + h ∈ 𝛺} (1)

This autocorrelation function can be written in a dimensionless form as

̃C(h) = C(h) − C(0)2

C(0) − C(0)2
and approximated as

̃Cf it (h) = exp

(

−2𝜋1∕3

√
(hx
Lx

)2
+
(hy
Ly

)2
+
(hz
Lz

)2
)

. (2)

In Eq. 2, three length scales Lx, Ly and Lz are introduced to quantify the decrease

rate of ̃C and define a virtual unit cell in which the microstructure is highly correlated

with respect to stress transmission. The strain evolution of these three autocorrela-

tion lengths is plotted in Fig. 2 during the triaxial loading introduced in Sect. 1. As

the horizontal autocorrelation lengths remains constant around 3 rmean, the vertical

autocorrelation length increases up to a peak value of 4.5 rmean before decreasing and

stabilizing around 4 rmean. The increase in the vertical autocorrelation corresponds to

a lengthening of the force chains along the vertical direction which accounts for the

initial hardening of our dense sample. The following decrease in the vertical autocor-

relation accounts for the destruction of force chains and thus to the stress softening

observed in the end of the triaxial test.

3 Grain Transport Analysis

In order to understand the grain transport mechanism from a micromechanical point

of view, a description of the void phase based on the previous work of [7, 9] is

proposed in this section. The description of the void space is reduced to an oriented

graph composed of pores (the nodes of the graph) and constrictions (the edges of the

graph) based on the tessellation of the granular assembly. Pore centers are defined at

the center of each tetrahedron of a regular Delaunay triangulation and pore radii as

the radius of the largest interior sphere in the associated tetrahedra. The constrictions

are modeled as cylinders joining two adjacent pores and their radii are defined as the

radius of the largest interior circle on the common face of the two tetrahedra defining

the constriction.
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(a) (b)

Fig. 3 Probability density for a constriction (solid), a grain (dotted) or a non-chained grain (dash-
dotted) to be of a given radius (a). Mean travel distance for different radius thresholds (b). The

thick line corresponds to |𝜀zz| = 20%, while the thin line to |𝜀zz| = 0%. The grey domain in the

background corresponds to the radius values for the grains composing the sample

Based on this description of the pore space, the probability density for a free

particle of a given radius to find a constriction large enough to travel from one pore

to an other can be computed. This probability density is shown in Fig. 3 together with

the probability density corresponding to the radius distribution of the non-chained

grains identified in the previous section.

The comparison between the constriction probability density and the grain prob-

ability density in Fig. 3 highlights that a large number of grains are small enough to

be transported through the pore network. An even larger fraction of the non-chained

grains is concerned as 33–34% of these grains have a radius smaller than the mean

constriction radius plus one standard deviation.

Even though many particles are identified in Fig. 3 as potentially transportable

by analyzing the statistical properties of the pore network, determining the distance

that a particle of a given radius can cover requires knowing the spatial distribution of

pores and constrictions together with the fluid flow direction. This can be achieved

thanks to the combined used of the DEM-PFV model implemented in YADE [2]

together with the definition of transport paths based on a propagation criterion:

∙ First, the DEM-PFV scheme is used to generate a pressure map in the pore network

under a horizontal fluid flow imposed by a small pressure drop of 10 Pa;

∙ Then, based on the Hagen-Poiseuille flow velocity profile for a circular tube and

the expression of the drag force of a uniform flow acting on a sphere for low

Reynolds numbers, a flow intensity indicator is defined in each constriction as
𝛥p
𝓁
× R2

with 𝓁 being the length of the constriction, 𝛥p the pressure drop between

the two adjoining pores and R the constriction radius;

∙ Finally, a transport path is defined for a given particle of radius r and for a given

starting pore as the path of maximum flow intensity on the restriction of the pore

network to pores and constrictions of radii larger than r.
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For a given radius r, a mean travel distance ̄D(r) is computed from statistical averag-

ing of the length of all the existing transport path defined above. This quantity stands

as a measure of the typical length associated with grain transport mechanism and is

plotted in Fig. 3.

The mean travel distances decreases from 22–29 rmean to zero. If no transport

is possible for particles larger than roughly 0.5 rmean the smallest particles of the

considered samples have good chances to be transported over large distances going

up to 25 rmean. Indeed, particles smaller than 0.5 rmean represents 25% of the non-

chained grains.

4 Conclusion

In this paper, specific micromechanical tools are developed to investigate the sus-

ceptibility of a polydisperse assembly of spherical particles to grain detachment

and grain transport. By simultaneously considering the size distributions of the non-

chained particles and the constrictions of the pore network, the ability of a fluid flow

to modify the microstructure of the samples is analyzed with respect to the fraction

of both potentially detachable and transportable particles. For the particular grad-

ing used in this study the typical length scale associated with grain transport can be

up to ten times larger than that associated with grain detachment. As a result, a scale

separation should exist between these two processes for the smallest particles.

Eventually, some fully coupled DEM-PFV numerical simulations were run. The

numerical results were used to demonstrate the relevance of the developed micro-

mechanical tools and validate the introduced length scales associated with grain

detachment and grain transport. These numerical simulations also enable to track

the microstructure evolution resulting from force chains rearrangements and grain

transport which will pave the way for the micromechanical analysis of the internal

fluid flow impact on the bifurcation domain of the considered sample.
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Rigorous Comparison
of the Rudnicki-Rice and Vermeer
Bifurcation Criteria

Marte Gutierrez

Abstract This paper presents a rigorous comparison of the bifurcation criteria
formulated by Rudnicki and Rice [1], and Vermeer [2, 3] for strain localization in
geomaterials. It is shown that the simpler Vermeer’s criterion is equivalent to the
more complicated Rudnicki-Rice criterion for two-dimensional loading conditions.
Differences between the two criteria exist for three-dimensional loading conditions.

1 Introduction

The Rudnicki-Rice [1] criterion has been widely used to detect bifurcation in
geomaterials. Vermeer’s [2, 3] bifurcation criterion has also been proposed and
cited in numerous references, and is relatively simple making it easy to use and
implement. The paper aims to improve the understanding bifurcation-induced strain
localization in geomaterials. The specific objectives of this paper are to: (1) com-
pare the bifurcation criteria of Rudnicki and Rice, and Vermeer; and (2) investigate
the validity and applicability of Vermeer’s criterion as an alternative to the more
involved Rudnicki-Rice criterion.

2 Rudnicki and Rice Criterion

Localization of deformation into a planar band is an alternative to homogeneous
deformation if a nontrivial solution exists to the following eigenvalue problem:

niDijklnl
� �

gk =0 ð1Þ
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where Dijkl = constitutive stress-strain tensor, and ni = normal to the localized
band. A non-trivial solution for the discontinuity vector gk in Eq. (1) is possible
only when the acoustic tensor Bik, defined below, has a zero or negative determi-
nant, becomes non-positive definite, and produces negative eigenvalues. This
condition may be stated for the case in which co-rotational terms are neglected as:

det Bikj j= det njDijlknl
�� ��≤ 0 ð2Þ

To facilitate the localization analysis, Rudnicki and Rice [1] formulated the
bifurcation criterion by using a coordinate system with the x1 and x2 axes that are
parallel and normal, respectively, to the yet undetermined shear band orientation
(Fig. 1)

det D2jk2
�� ��=0 ð3Þ

Equation (3) implies kinematic conditions of uniform strain rates inside and
outside the band Δε̇ij =0, except for the jump in the normal strain rate perpen-
dicular to the band Δε̇22 ≠ 0. Equilibrium conditions allow for jumps in the stresses
inside and outside the band Δσ̇ij ≠ 0, except for uniform stresses normal to the band
Δσ̇2j =0.

3 Vermeer Criterion

An easier way to formulate the bifurcation problem is via the compliance approach
of Vermeer [2, 3]. Consider a soil element subjected to the principal stresses
σI, σII and σIII (Fig. 2). Let the yet to be determined shear band plane be oriented
along the x1, x2 and x3 axes, with the x1-axis oriented at angle θ from σIII

x1

x2
Shear band 

Fig. 1 Coordinate system for
stain localization (Rudnicki
and Rice [1])
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the-direction. According to [1], if the principal stresses are distinct, the normal to
the critical plane of localization is perpendicular to σII for the expected range of
friction and dilations angles for geomaterials, and the localization plane is per-
pendicular to σIII only in exceptional cases. The comparison of the Rudnicki-Rice
and Vermeer criteria is, therefore, carried out using the most expected shear band
geometry as shown in Fig. 2 where σII is parallel to the shear band plane.

In Vermeer’s criterion, kinematic conditions allow for jumps in strain rates
inside and outside the band Δε̇ij ≠ 0, except for the uniform normal strain rates
parallel to the band Δε̇11 = 0 and Δε̇33 = 0, and equilibrium conditions with the
same stresses inside the outside the band Δσ̇ij =0, except for the jump in normal
stresses parallel to the band Δσ1̇1 ≠ 0 and Δσ ̇33 ≠ 0. Applying these conditions to
the compliance relation Δεij =CijklΔσ̇kl , where Cijkl is the elasto-plastic compliance
matrix, yields Vermeer’s criterion:

C1111 = 0 ð4Þ

Vermeer’s approach simply requires that the compliance tensor Cijkl be formu-
lated using the axis coinciding with the yet unknown shear band direction, and then
setting the component C1111 parallel to the shear band to zero. This gives the
condition for the onset of instability and shear banding. It is noted that Cijkl is
undefined for perfect plasticity (h = 0) and strain softening (h < 0), however, both
stages are beyond bifurcation, and are not the scope of the current study.

Shear band 

I

II

III

x2

 x3

x1

Axis  is parallel to 

the shear band and θ is 
the shear band orienta-
tion measured from the 

-axis. Note that ac-

cording to Rudnicki and 
Rice [1], and Vermeer 
[2], axis  coincides 

with the -axis. 

x1

x3

σΙΙΙ

σΙΙ

Fig. 2 Soil sample under triaxial loading conditions with a shear band
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4 Comparison of Rudnicki-Rice and Vermeer Bifurcation
Criteria

For elasto-plastic materials, the constitutive relations Dijkl and Cijkl can be expressed
in terms of a yield criterion f = f(σij, α), a plastic potential function g = g(σij), and a
plastic hardening parameter α:

Dijkl =De
ijkl −

1
h+ h′ð Þ De

ijpq
∂g
∂σpq

∂f
∂σrs

De
rskl

� �
,Cijkl =Ce

ijkl +
1
h
∂f
∂σkl

∂g
∂σkl

ð5Þ

where De
ijkl and Ce

ijkl are the elasticity and elastic compliance tensors, respectively,
h′ = ∂f ̸∂σij

� �
De

ijkl ∂g ̸∂σklð Þ, and h is the plastic hardening modulus which can be
obtained from the consistency condition.

For two-dimensional loading conditions, it can be shown that the Rudnicki and
Rice criterion (Eq. 3) can be written as:

det
D2222 D2212

D1222 D1212

	 

=0 ð6Þ

Substituting the elastoplastic relations given in the first equation in Eq. (5) to
Eq. (6) will show that the determinant in Eq. (6) is exactly equal to C1111, hence
leading to Vermeer’s criterion of Eq. (4). For a non-associated Mohr-Coulomb
failure criterion with friction angles ϕ nd dilation angle ψ, the predicted critical
strain hardening modulus hcr at bifurcation and shear band orientations θ are given
in Table 1. As can be seen, the predictions are identical for both criteria for
two-dimensional loading.

For three-dimensional loading, the Rudnicki and Rice’s elasto-plastic constitu-
tive tensor Dijkl takes the form:

Dijkl =G δkiδlj + δkjδil
� �

+ K − 2
3
G

� �
δijδkl −

G
τ sij − βKδij

� �
G
τ skl − μKδkl

� �
h+G+ μβK

ð7Þ

where sij = deviatoric part of σij, τ = ((sij sij)/2)
(1/2) = shear stress, K and

G = elastic bulk and shear moduli, respectively, and µ and β are defined as the
internal friction coefficient and dilatancy factor, respectively. Applying
Rudnicki-Rice criterion (Eq. 3), and solving for h and minimizing its value yield
the critical hardening modulus at bifurcation hcr and the corresponding shear band
orientation in Table 1.

Expressed with the same variables, the equation for elasto-plastic compliance
component C1111 takes the form:
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C1111 =
ðG+3KÞ
9GK

+
1
h

s11
2τ

−
μ
3

� � s11
2τ

−
β
3

� �
ð8Þ

Equating C1111 to 0 and solving for h and minimizing its value yield the critical
hardening modulus at bifurcation hcr and the corresponding shear band orientation
in Table 1. As can be seen, significant differences exist in the predictions from the
two criteria for three-dimensional loading conditions.

5 Conclusions

Comparisons of the predictions of the shear band orientation and hardening mod-
ulus at bifurcation from the Rudnicki-Rice and Vermeer criteria for two and
three-dimensional loading conditions are summarized in Table 1. As can be seen,
identical results are obtained for two-dimensional biaxial loading conditions.
However, the results are completely different for three-dimensional loading except
for the shear band orientation when ϑ = 0° for Vermeer’s criterion, and sII = (β +

Table 2 Comparisons of the Rudnicki and Rice [1], and Vermeer [2] bifurcation criteria

Rudnicki and Rice (1975) Vermeer (1982)

(1) Applicable to 2D and 3D loading
conditions

(1) Limited to 2D loading conditions

(2) Complicated requiring eigenvalue
analysis

(2) Simple and easy to understand

(3) Difficult to use for complicated
constitutive models

(3) Easy to implement even for complicated
constitutive models

(4) Kinematic conditions require uniform
strain rates inside and outside the band
(Δε̇ij =0), except for the jump in the
normal strain rate perpendicular to the
band (Δε̇22 ≠ 0)

(4) Kinematic conditions allow for jumps in
strain rates inside and outside the band
(Δε̇ij ≠ 0) except for the uniform normal
strain rates parallel to the band
(Δε̇11 = 0 and Δε̇33 = 0)

(5) Equilibrium conditions allow for jumps in
the stresses inside and outside the band
(Δσ̇ij ≠ 0), except for uniform stresses
normal to the band (Δσ̇2j =0)

(5) Equilibrium conditions require the same
stresses inside the outside the band
(Δσ̇ij =0), except for the jump in normal
stresses parallel to the band
(Δσ̇11 ≠ 0 and Δσ3̇3 ≠ 0)

(6) Localization criterion is a function of the
shear stress components s22, s21 and s23

(6) Localization criterion is a function of only
the shear stress component s11

(7) For 3D loading, shear band orientation
and critical hardening modulus are
functions of the intermediate principal
stress

(7) For 3D loading conditions, predicts a
much earlier bifurcation point than
Rudnicki and Rice (1975), and a
hardening modulus independent of the
intermediate principal stress

(8) Agrees with experimental data (8) Does not agree with experimental data for
3D loading
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µ)/3 for Rudnicki and Rice’s. For “simple shear” conditions, the critical hardening
modulus from Vermeer’s criterion is at most half of that of Rudnicki and Rice’s.

Table 2 summarizes the comparison of the two criteria. The discrepancies
between the two criteria stem from: (1) The differences in the kinematic and
equilibrium conditions used to derive the criteria (Table 2), with these conditions
being more restrictive in Vermeer’s criterion, and (2) The fact that hardening
modulus in Vermeer’s criterion is a function of only a single stress component s11
(Eq. 8), while that of Rudnicki and Rice depend on three components s22, s21 and s23
(Eq. 7). Thus, the latter can fully represent the state of stress in the shear band while
the former cannot. The validity of the predictions from Rudnicki and Rice’s cri-
terion has been extensively validated experimentally and theoretically in the liter-
ature. Given the discrepancies, it appears that Vermeer’s criterion is valid only for
two-dimensional loading and not for three-dimensional loading.
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Second Gradient Models and Concrete
Structures

G. Jouan, M. Soufflet, P. Kotronis and F. Collin

Abstract Damage induces strain localization in quasi-brittle materials such as

concrete. In order to correctly simulate this behaviour, it is necessary to introduce a

length scale parameter in the continuum model. The second gradient model, a spe-

cial case of kinematically enriched continua, uses an internal length parameter by

taking into account the second order derivatives of the displacements in the virtual

power principle. A penalty term is added in the original second gradient finite ele-

ment formulation in order to improve convergence and to avoid erroneous damage

distribution. A three points bending test of a reinforced concrete beam show the per-

formance of the improved second gradient finite element formulation.

1 Introduction

As a material exhibiting softening, concrete is subject to strain localization. In order

to correctly simulate this behavior a model with a length scale parameter is needed.

Chambon, Caillerie and Hassan gave a closed form solution for the one dimensional

problem of strain localization in a bar with a bilinear type constitutive law in a second

gradient continuum [2]. This was soon followed with several applications for plane

strain shear banding [4, 14, 17, 22], mostly in soils. Similar approaches were also

recently used in the framework of damage mechanics combined with homogeniza-

tion techniques by Li [15, 16], see also [10, 11, 13, 23] for application in concrete

structures.
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In this paper, it is shown that the original finite element formulation adopted in a

previous work of the authors [11] presents some numerical difficulties to correctly

simulate damage localization problems. The original finite element of Matsushima

et al. [17] is thus improved by adding a penalty term, following previous works by

Fernandes [6] for plasticity problems. The ability of the improved model to better

simulate strain localization in concrete is studied with a three points bending test of

a reinforced concrete beam.

2 Second Gradient Model

Considering a body of domain 𝛺 and of boundary 𝛤 , the general formulation of a

second gradient model using the virtual power principle can be written as follows

[2, 17]:

∫
𝛺

(𝜎iju⋆i,j + Σijku⋆i,jk) d𝛺 = ∫
𝛤

(piu⋆i + PiDu⋆i )d𝛤 , (1)

where 𝜎ij is the macro stress (the classical second order stress tensor), Σijk the double

stress (a third order tensor) and pi and Pi respectively the first (classical) and second

order surface traction (first order tensors).

In linear elasticity, the constitutive law for 𝜎ij depends as usual on the first gradient

of the displacements, while Σijk is a function of the second gradient of the displace-

ments [19]. Coupling between the first and second gradient parts is possible, see

for example [3, 7, 12]. Chambon and co-workers considered mainly cases with full

decoupling of the first and second gradient parts: nonlinear laws, independent of Σijk
and ui,jk for the first gradient part and an elastic linear isotropic law for the second

gradient part [5, 14, 17, 20]. It should be highlighted however that the introduction

of damage on the second gradient part has been studied by different authors [12, 15,

16, 23]. In [12] and for a 1D case, it is shown that a carefully formulated coupling

law leads to an a priori control of the width evolution (constant, increase or decrease)

of the localisation zone.

3 Finite Element Formulation

3.1 The Original Mixed Formulation

One way to circumvent the difficulties of the necessary C1
continuity is to adopt a

mixed formulation and to interpolate the gradient independently from the displace-

ment field [17, 21]. More specifically, the displacement field ui and its gradient noted

vij are both interpolated with C0
functions since only first order derivatives appear

in the weak formulation provided either by the virtual power principle of a general
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micromorphic media with a kinematic constrain [3] or by integration of the strong

form of the equilibrium equations [21]. In the former case, we can directly write:

∫
𝛺

(𝜎iju⋆i,j + 𝜆ij(v⋆ij − u⋆i,j) + Σijkv⋆i,jk) d𝛺 = ∫
𝛤

(piu⋆i + Piv⋆ij nj)d𝛤 (2)

with the added kinematic constraint (in weak form) :

∫
𝛺

𝜆
⋆

ij (vij − ui,j) d𝛺 (3)

where 𝜆
⋆

ij is the field of Lagrange multipliers associated with the kinematic con-

straint. For the second gradient model, Matsushima et al. [1, 17] originally developed

a 9-nodded finite element with the displacement field interpolated by biquadratic

functions of the serendipity type and the gradient field by bilinear functions. Lagrange

multipliers are constant on the element while numerical integration is performed

using a classical Gauss scheme [1]. The numerical performance of this formulation

is tested hereafter using a three points bending test of a reinforced concrete beam.

3.2 A Three Points Bending Test of a Reinforced
Concrete Beam

The concrete beam has the following geometrical characteristics: thickness b =
200mm, height h = 500mm and span 5000 mm. The tested beam and the steel rein-

forcement are shown in Fig. 1.

The finite element mesh consists of 5180 elements, 4148 of which are second gra-

dient elements and 1032 truss elements representing the horizontal reinforcement.

The average size of the concrete elements is of 0.02 m × 0.035 m. The two supports

(the two points at the bottom of the specimen, see Fig. 1) are blocked vertically while

the right support is also blocked horizontally. For the finite element calculations,

monotonically increased displacements are applied at the upper part of the beam

through an elastic plate, which is very stiff compared to the other materials [11].

At both supports at the bottom of the beam and on the upper part, where the dis-

placements are applied, an elastic linear law is introduced to prevent any artificial

numerical damage. A classical damage mechanics law is used for the first gradi-

ent constitutive law [18]. An isotropic linear elastic constitutive law is adopted for

the second gradient part depending on a single material parameter. No coupling is

assumed between the first and the second gradient constitutive laws. An elastic per-

fectly plastic law is used for the reinforcement and a perfect bond is assumed.

Figure 2 shows the damage distribution in the entire beam as well as two close

ups. It can be observed that in the localization bands and inside certain finite ele-

ments some integration points present an increasing damage variable while others

are unloading leading to serious convergence problems.
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Fig. 1 3 point bending test: beam dimensions and steel reinforcement [8, 9]

Fig. 2 Damage distribution in a three points beam test (top figure). Zoom on damage oscillation

problems (left figure) and loading integration points (red rectangles correspond to integration points

with an increasing damage variable, right figure)
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Fig. 3 3 point bending test: damage distribution for an imposed displacement of 6 mm a without

and b with a penalty factor

3.3 Addition of a Penalty Term

A way to improve the numerical performance of the original mixed second gradient

finite element formulation is to add a penalty term to enforce the kinematic constraint

(while keeping the Lagrange multipliers) [10]. A similar approach was proposed by

Fernandes et al. [6] in the context of plasticity. Noting C the penalty factor, the weak

formulation of the problem becomes:

∫
𝛺

(𝜎iju⋆i,j + 𝜆ij(v⋆ij − u⋆i,j) + C(v⋆ij − u⋆i,j)(vij − ui,j) + Σijku⋆i,jk) d𝛺 = ∫
𝛤

(piu⋆i + Piv⋆ij,knk)d𝛤

(4)

∫
𝛺

𝜆
⋆

ij (vij − ui,j) d𝛺 (5)

The three points bending test of section is modelled here using the second gradient

finite element with the added penalty term. Figure 3 gives the damage distribution

corresponding to an imposed displacement U = 6 mm without and with a penalty

factor. It is clear that the introduction of the penalty factor improves the numerical

performance of the model and results to a more smooth and continuous damage

distribution.

4 Conclusions

Following previous works [11, 13], the second gradient model is used as a regu-

larization method for concrete structures in the context of damage induced strain

localization. The performance of the 2D second gradient finite element is improved

by introducing an additional penalty term in the Lagrangian mixed formulation. An

example is provided considering a reinforced concrete beam.
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Fast Landslide Propagation: Alternative
Modelling Techniques

M. Pastor, A. Yagüe, M. Martín Stickle, S. Moussavi, Chuan Lin,
A. Furlanetto, D. Manzanal, P. Mira and J.A. Fernandez Merodo

Abstract We model debris flows using two sets of nodes, describing the water and
the solid phases, which can move relative to each other. We present first the
mathematical model which will be used, deriving it from Zienkiewicz-Shiomi
model, and arriving to the depth integrated model proposed by Pitman and Le.
Then, we present the rheological models describing solid, fluid and their interaction.
Next, the SPH model for two phases will be described. Finally, we present some
application cases where we will compare the results provided by the proposed
model against those obtained using more simplified models.

Keywords Landslide propagation ⋅ Rheological models ⋅ SPH model ⋅ Debris
flow

1 Introduction

The term landslide embraces a large variety of phenomena. Regarding flow type
movements, we find rock avalanches, debris flows, mudflows and flow slides. In the
case of rock avalanches the flowing material consists on solid blocks which are
disintegrating into smaller particles as they propagate downhill.

Mudflows consist of mixtures of fine soil particles and water, and they can be
modelled with continuum models using a single phase viscous fluid.

Flow slides are mixtures of soil particles and water, with relative displacements
between both phases. The tendency of the solid skeleton to dilate or contract results
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on pore pressure generation affecting the effective stresses. To describe them,
mathematical models formulated in terms of velocities and pore pressures
(Biot-Zienkiewicz of u-pw type) provide a good approximation.

Debris flows is the more complex phenomenon from the modelling point of
view, as both solid particles and water can have different velocities. The models
have to include velocities of both solid and fluid phases, and the stresses acting on
them.

This purpose of this work is to present the alternative models (mathematical,
constitutive and numerical) which can be applied to these phenomena. We will pay
special attention to the case of debris flows, where both phases and their mutual
interaction have to be modelled.

The paper is structured as follows:

(i) We will present first the mathematical model which will be used, deriving it
from Zienkiewicz-Shiomi model, and arriving to the depth integrated model
proposed by Pitman and Le.

(ii) Then, we will present the rheological models describing solid, fluid and their
interaction.

(iii) Next, the SPH model for two phases will be described.
(iv) Finally, we will present some application cases where we will compare the

results provided by the proposed model against those obtained using more
simplified models.

2 Mathematical Models

While models for debris flows are relatively modern in engineering geology, their
origin can be tracked back along two different paths:

(i) Zienkiewicz, following Biot [2], proposed a general formulation which can be
applied to debris flows [14]. From here, simpler approximations such as the
u-pw model were derived. This model is used today in most of coupled
problems of geotechnical engineering.

(ii) Within the area of physics of granular media, where important contributions
have been made to study industrial problems such as the fluidized beds, we
can mention the work done by Anderson and Jackson [1]. Regarding appli-
cations to debris flows, Pitman and Le [11], and Pudasaini [13] have proposed
two phase models for debris flows, arriving to most interesting two phase’s
simplified models of depth integrated type.

In the same manner than the general two phase model of Zienkiewicz and
Shiomi [14] can be particularized to the u-pw model, depth integrated models based
on this approach have been proposed by Iverson and Denlinger [5] and Pastor et al.
[6, 8].
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Once integration along depth is performed, we obtain the balance of mass and
momentum equations for both phases solid (s) and fluid (w) as:

dð̄αÞ

dt
hαð Þ+ hα div vᾱ = nᾱ eR

where

α= s,wf g hα = nᾱh

ns̄ = 1− n ̄ð Þ nw̄ = n ̄

In above equations, α refers to the phase, d
ð̄αÞ

dt is the derivative following phase α,
nᾱ the volume fraction, h the depth of the flow, vᾱ the depth averaged velocity and
eR the erosion rate.

Regarding balance of momentum, we have:

ραhα
dðαÞvᾱ
dt

=grad
1
2
ρ

α
hhab3

� �
−

1
2
ραh

2b3 grad nᾱ

+ τ αð Þ
b + hα Rα + ραhαb− nᾱραvᾱeR

where ρα is the density, b the body forces, τ αð Þ
b the basal friction, and Rα the

interaction between phases.
The general two-fluid depth integrated equations described above can be sim-

plified if we assume that dðwÞ
dt ≈

dðsÞ
dt = d

dt and neglect the acceleration of the fluid
relative to the solid. Equations results on:

dh̄
dt

+ h div v=0

ρh
dv̄
dt

=
1
2
grad ρh2b3

� �
+ τb + ρh b− ρveR

The basal shear stress depends on the rheological law used. In the case of a pure
frictional material, it is given by

− ρs − ρwð Þ 1− nð Þhb3 +Δpwbf g vs
vsk k tan ϕb

where ϕb is the friction angle and Δpwb the increment of pore water pressure at the
basal surface.
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3 Numerical Modelling

Regarding numerical models, there exist today some interesting approaches which
could be used, i.e., the Smooth particle Hydrodynamics (SPH) and the Material
Point Model (MPM). The authors have explored the former approach, finding that
features such as coupling with pore water and failure mechanisms can be accurately
described [3, 4]. Both MPM and SPH are lagrangian approaches. They present, in
comparison to the eulerian approaches the advantage of not needing special tech-
niques such as level set to track interfaces.

In the case of depth integrated models, both approaches can be used. So far, most
of models are of eulerian type, using finite volumes or elements Pitman and Lee
[11, 12], Pudasaini [13], Pastor et al. [6], or of lagrangian type (SPH), as Pastor
et al. [8] and McDougall and Hungr [7].

In a previous publication, the authors have addressed the problem of coupling
SPH with a series of finite difference meshes associated to each SPH node, which
provides better accuracy to reproduce pore pressure changes Pastor et al. [9, 10].

Here, we will model debris flows using two sets of nodes, describing the water
and the solid phases, which can move relative to each other.

We will introduce:

(i) Two sets of nodes xαKf g with K =1 . . .Nα where Ns and Nw are the number
of SPH nodes in the solid and fluid phases,

(ii) The nodal variables: hα I heights of phases at node I, vᾱ I depth averaged, 2D

velocities, and τ αð Þ
bI shear stress at the bottom.

The balance of mass equation is written at node I as:

d ̄
dt
hI + hI⟨div v ̄⟩I = ⟨n ̄ eR⟩I

where the divergence term is approximated as:

div v ̄I = − ∑
J
ΩJvJ gradWIJ

Note that for the sake of simplicity we have omitted the indexes α. Alternatively,
the height can be obtained once the position of the nodes is known as:

hI = ⟨h xIð Þ⟩= ∑
J
hJΩJWIJ = ∑

J
mJWIJ

The height can be normalized, which allows improving the approximation close
to the boundary nodes:
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hI =
∑
J
mJWIJ

∑
J

mJ
hJ

� �
WIJ

Next, we will discretize the balance of linear momentum equation

Fig. 1 Terrain topography and profiles of debris flow height at times 5, 10, 60 and 120 s
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dð̄αÞ

dt
vᾱI = ∑

J
mJ

Pα I

h2I
+

Pα J

h2J

� 	
gradWIJ + ∑

J
mJh2Jb3

nα I
h2I

+
nα J
h2J

� 	
gradWIJ

+
1

ραhα I
τ αð Þ
b I +

1
ρα

Rα + b−
1
hα I

nᾱ vᾱ eR

where we have introduced the averaged pressure Pα = − 1
2 hhab3.

In above equations, there is a term describing basal excess pore pressure at node
I Δpwb I which has to be obtained at each node and time step. One alternative is to
use simple shape functions fulfilling boundary conditions at the surface and the
basal surface. This approach presents the limitation of not being able to model
changes of boundary conditions at the bottom. For instance, when a landslide runs
over a very permeable basal layer- or a rack-pore pressure becomes zero there,
while in the body of the landslide is not zero. If a single shape function is used,
once the basal value is set to zero, the pressure becomes zero in the whole depth.
The authors proposed in Pastor et al. [10] to use a set of finite difference meshes
associated to each node in order to model pore water pressure dissipation or
generation.

We have applied this model to reproduce the Sham Tseng San Tsuen Debris
Flow, which happened in Hong Kong on the 23rd of August 1999 (Fig. 1).
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Bifurcation Criteria for Strain Localization
in Multiphysical Systems

Manolis Veveakis, Thomas Poulet, Sotiris Alevizos and Martin Paesold

Abstract The study of bifurcation criteria for non-isothermal processes in geo-

materials requires approaches that deviate from the classical material bifurcation

approach. Indeed, in a quasi-static stress state of the medium, the admissible equi-

libria are of steady-creep-type and are governed also by the energy balance. Further-

more the steady-state temperature profiles are far from homogeneous as shown by

[3], leading the analytical stability analysis to be rather complex. In this contribu-

tion, we adopt an overstress plasticity approach and present approximations for the

criteria of the onset of localisation of deformation in a plane strain setting, using

numerical continuation methods.

1 Modelling Considerations

In plane strain conditions, the general system of equations under consideration con-

sists of the momentum and energy balance equations which can be written as,

𝜎ji,j = 0, (1)

𝜌c ̇T = 𝛼T
,ii +𝛷. (2)

where index notation is applied (i = 1, 2), the over imposed dot denotes time differ-

entiation and comma denotes spatial differentiation. In this system, 𝛼 is the thermal

conductivity, 𝜎ij is the stress tensor, T is the temperature, 𝜌 the density, c the specific

heat capacity and 𝛷 the mechanical work dissipated into heat. The temperature dif-

fusion equation (2), was derived by neglecting the higher order energy terms, like
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the thermo-elastic heating and by combining the energy balance law with the second

law of thermodynamics.

In addition, we adopt the stress decomposition 𝜎ij = p𝛿ij + sij, with p the volu-

metric mean stress and sij the deviatoric stress. For such a problem, we formulate the

governing equations in the equivalent coordinate system where the stress tensor is

rotated such that its elements are the mean stress p = I1∕3 and the von Mises stress

q =
√
3J2. In these expressions I1 = tr(𝜎ij) is the first invariant of the stress tensor

and J2 = sijsij∕2. The corresponding coordinate transformation dates back to Levy

[4] and has the form:

𝜎11 = p − q sin 2𝜓, 𝜎22 = p + q sin 2𝜓, 𝜎12 = 𝜎21 = q cos 2𝜓, (3)

where 𝜓 is the rotation angle of the coordinate system.

The mechanical dissipation takes the form (see also [7, 11]) 𝛷 = 𝛽𝜎ij�̇�
p
ij, where 𝛽

is the Taylor-Quinney coefficient [10]. In order to close the system of equations, we

need to provide a mechanical constitutive law. To that end, we first split the strain rate

into elastic (reversible) and plastic (irreversible) parts �̇�ij = �̇�
e
ij + �̇�

p
ij. For the elastic

component we adopt a linear elastic law of the form �̇�
e
ij = C−1

ijkl�̇�kl.

For the irreversible part, we assume that the Helmholtz free energy is invertible,

such that the evolution of the plastic strain depends on the stress and temperature

and takes the following form,

�̇�
p
ij = �̇�0 e−T0∕T⟨f (𝜎ij)⟩

𝜕g
𝜕𝜎ij

, (4)

where �̇�0 is a reference strain rate, where T0 is the activation temperature for the

thermal hardening mechanism, f is the so called over-stress function [8], g is the

plastic potential function and the Macaulay brackets ⟨⋅⟩ ensure zero plastic strain

before yield. This decomposition is supported by experimental data at elevated tem-

peratures, below the phase transition temperature of the material [2] and the two

most representative constitutive responses of temperature and rate dependent mate-

rials are an Arrhenius-type dependency on temperature, with either a power-law or

an exponential dependency on stress. The function f (𝜎ij) is an arbitrary flow stress

function.

The exact form of the constitutive equation is not prescribed during the analysis of

the bifurcation in order to emphasize the generic nature of the formulation, where the

onset of plastic deformation is derived from the basic assumptions of the energetics.

The only important aspect of the constitutive response of the material is that it must

obey a visco-plastic relationship linking the plastic strain-rate with the stress. This is

required so that in the steady-state limit of the equations (�̇�ij = ̇T = 0) the mechanical

dissipation remains non-zero. Finally, as shown in earlier studies (see for example

[6]), the choice of the form of the temperature dependence of the plastic flow law

is not central for the results of the present study and the Arrhenius type exponential

dependency is the one that allows for the most convenient mathematical treatment.
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2 Energy Bifurcation

We start by studying the steady-state limit of the system, in which ̇T = �̇�ij = 0. There-

fore, in this regime the elastic contribution is neglected and the problem reduces

to that of the study of the response of a rigid (visco-)plastic material. This setting

can therefore be considered to be a direct extension of the slip line field theory to

thermo-visco-plastic materials. We note that in the present formulation the tempera-

ture equation (2) is active only when dissipation is non-zero. Since this is achieved in

the post-yield regime, we expect that the orientation of possible localization planes

would arise from the characteristics of the stress equilibrium, in accordance with the

theory of plasticity [4].

At the point of initial yield, where the temperature equation is inactive, the

response of the system is governed by the stress equilibrium equations. We assume a

generalized yield surface at a reference temperature of the form q = qY (p). In order

to find the characteristics of the hyperbolic differential stress equilibrium equations

(slip lines) we substitute the Levy stress transformations Eq. (3), into the stress equi-

librium, Eq. (1). The slip lines are parametrized in terms of the arc-length s and the

slopes of the characteristics along the x1- and x2-axes read

𝜕x1
𝜕sk

= 𝜇
(k)

√
1 + 𝜇

(k)2
,

𝜕x2
𝜕sk

= 1
√
1 + 𝜇

(k)2
, (k = 1, 2) (5)

where 𝜇
(k)

is the kth left eigenvalue of the stress equilibrium equations. For a general

yield surface q(p)

𝜇
(1,2) = ∓

√
1 − h2 + cos(2𝜓)
h + sin(2𝜓)

(6)

and the quantity h = q′Y (p) is a generalized pressure modulus. Note that in this

expression p must be critical, i.e. equal to its yield value. For incompressible mate-

rials h = 0.

Rescaling Eq. (1), along the characteristics Eq. (5) provide the generalized

Hencky’s equations

0 =
√
1 − h2 ps ± 2q𝜓s. (7)

In the case of a von Mises material, where qY = k = const., Eq. (6) simplifies (as h =
0) to the familiar form 𝜇

(1) = − tan𝜓, 𝜇
(2) = cot 𝜓 , and the corresponding traces are

commonly known as 𝛼/𝛽-slip lines. Along the slip lines Eq. (7) reduce to the classical

Hencky’s equations p ± 2k𝜓 = C
𝛼,𝛽

.

The energy balance can be brought into dimensionless form by setting

𝜃 =
T − Tb
Tb

, x̂i =
xi
Li

(i = 1, 2), Ar =
T0
Tb

, (8)
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where Tb is the boundary temperature and Li is an appropriate length scale. Since

we are interested in deformation taking place under isothermal boundary conditions

the final dimensionless equation is rescaled along the characteristics to obtain (the

superimposed hats are dropped for convenience)

𝜕
2
𝜃

𝜕s2
+ Gr1D exp

( Ar 𝜃
1 + 𝜃

)
= 0, (9)

where the Gruntfest number admits the following form

Gr1D =
𝛽�̇�0L2

𝛼Tb
𝜇
2

(
1 + 𝜇

2
)2 e

−Ar
𝜎ij⟨f (𝜎ij)⟩

𝜕g
𝜕𝜎ij

, (10)

where L is a length scale. This Gruntfest number is spatially dependent through 𝜇,

and also incorporates the dimensionality of the system at hand, through L.

In Fig. 1, we present the steady state response of the system with respect to the

Gruntfest number, in a bifurcation diagram expressed for the dissipation function 𝜙.

We find three distinct steady states of alternating stability. The unstable branch BC

corresponds to a localization instability across the characteristic trace for the nor-

malized dissipation function 𝜙. Since in Fig. 1a the branches AB and CD are stable

in the dissipation the unstable branch BC cannot be admitted and the solution jumps

from stable near isothermal homogeneous plastic deformation on AB to localized

near adiabatic deformation on CD. The saddle point B therefore corresponds to the

necessary condition for the loss of ellipticity of the thermomechanical system, after

which localisation is progressively achieved. It is a similar condition to the tradi-

lo
g 

φ

Gr

(a)

A

B

C

D

s

φ/
φ m

ax

(b)

Branch AB
Branch BC

Fig. 1 a Folded S-curve. Along the branch AB the solution of Eq. (9) corresponds to an isothermal

temperature profile whereas along the section between the turning points B and C the solutions

localizes. b Examples of the one-dimensional spatial pattern of the dissipation profile for Ar = 10.

The profiles are normalized with respect to the maximum value of dissipation
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A
F or v

x

y

(a) (b)

Fig. 2 a The thermal heat cross observed in warm metals when forged [5]. b Geometry of the

problem configuration. A square is deformed by applying either a constant force F or constant

velocity v at the right hand side of the sample. The sample is pinned on the left and in the y-

direction. At the centre ‘A’ the sample is probed for various quantities. The theoretical analysis

presented in the previous sections for a rate-dependent von Mises material suggests that the slip

lines of this model run diagonally across the specimen and are represented by dashed lines [5]

(a) (b)

Fig. 3 Heat lines under fast constant velocity loading. The heat lines emerge from an initially

homogeneous temperature state. The heat lines follow the slip lines and can be observed as a local-

isation of a mechanical dissipation and b temperature

tional jump conditions for stress and velocity discontinuities in the classical slip line

field solution but is expressed here in terms of their product, the dissipation.

This transition from homogeneous to localized deformation is shown in Fig. 1b,

where the normalized dissipation is shown to localize towards the center of the

domain as it crosses the unstable BC branch of the S-curve (see also the results

of [6, 11]). The critical threshold for the transition from the stable branch AB to the

new steady state CD is characterized by the turning point B.
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To showcase this condition, we consider the simple heat cross localisation pattern

of Fig. 2a. The mathematical problem can be idealised following Fig. 2b, to obtain

localisation of temperature (dissipation) along the slip lines of the mechanical defor-

mation when Gr > GrB (Fig. 3). No localisation is observed before the turning point

of the S-curve.

3 Conclusion

In this work we have summarised an energy based localisation theory for temper-

ature sensitive viscoplastic materials. The generalisation of this criterion for more

complicated physics is straightforward as shown recently in the literature [1, 9, 12].
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Modelling Creeping and Catastrophic
Failure of Thermomechanically Driven
Landslides

A. Zervos, E. Alonso and N. Pinyol

Abstract Frictional heating of the slip zone is a possible explanation for why some
catastrophic landslides moved so fast and so far. The transition from a creeping
phase to catastrophic collapse governed by frictional heating is also a pertinent
problem: what governs it and why does it occur in some landslides but not others?
Here we consider the possibility that frictional heating combined with non-linear
velocity-dependent friction hardening suffices to explain both phenomena as well as
the transition. The paper outlines the relevant theoretical considerations and a
numerical treatment. It discusses the integration of the governing equations with
adequate temporal resolution for both regimes and the assumed location of the far
boundaries, which needs to strike a balance between accuracy and cost.

1 Introduction

Large catastrophic landslides are a constant threat to human communities and our
infrastructure. The morphology and dynamics of these events is quite diverse, and a
classification can be found in Hungr et al. [8]. Here we consider landslides that can
be described, at least in the timeframe of interest, as a coherent mass sliding on a
well-defined slip surface. This surface is assumed fully developed; we are thus
concerned with the post-failure stage of first-time failures, and with reactivated
slides where movement restarts along a pre-existing failure surface. The slide’s
motion and its evolution in time are governed by processes occurring at this
shearing surface, which is orders of magnitude thinner than the sliding mass. The
difference of scale makes it very difficult to numerically deal with both in a com-
mon framework. The approach followed here is to simplify the dynamics of the
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moving mass by assuming it is rigid in comparison to the shearband material, and
model in detail the latter; this practice is well established, e.g. Vardoulakis [13],
Veveakis et al. [14], Pinyol and Alonso [9, 10], Goren and Aharonov [5], Cecinato
et al. [3], Cecinato and Zervos [2], Alonso et al. [1]. In all these cases frictional
heating resulting to pressurization were fundamental parts of the analysis; their
relevance was first highlighted in the pioneering contributions of Habib [6], Uriel
and Molina [12] and Voigt and Faust [15].

Frictional heating is a destabilising process that leads to immediate catastrophic
failure. Slow movement at near-constant velocity is only possible if a stabilising
mechanism is present to counter-balance its effect. Rate-dependent friction is a
physically meaningful such mechanism [1]. We consider:

tanϕ= tanϕ0 1 +A ln
v
v0

� �
ð1Þ

where v is the sliding velocity, v0 is a reference velocity and the rate parameter A
can be taken to vary between extremes of 10−5 and 10−2 [1].

2 Governing Equations

As in Alonso et al. [1], the governing equations are written using the dimensionless

variables: ẑ= z
D, t =̂

t
ffiffiffiffiffi
gD

p
D , θ z ̂, t ̂ð Þ= θ z, tð Þ

θ0
, uŵ z ̂, t ̂ð Þ= uw z, tð Þ

ρgD , p ̂w = pw
ρgD and v ̂ t ̂ð Þ= v tð Þffiffiffiffiffi

gD
p ,

where t is the time, θ the temperature, uw the excess pore water pressure, pw the
initial pore water pressure, v the landslide velocity, ρ the density of saturated soil, D
the slide thickness, g the gravitational acceleration and θ0 a reference initial tem-
perature, assumed equal to 10 °C. The governing equations and initial and boundary
conditions are expressed as follows:

dv ̂ t ̂ð Þ
dt ̂

= sin βð Þ− cos βð Þ− pŵh
cos βð Þ −

um̂ax
w t ̂ð Þ
cos βð Þ

� �
tanφ′ ð2Þ

∂θ z ̂, t ̂ð Þ
∂t ̂

−
γ

ρcð ÞmD
ffiffiffiffiffiffi
gD

p ∂
2θ ẑ, t ̂ð Þ
∂z2̂

=H ̂ z ̂, t ̂ð Þ ð3Þ

−
βsoilθ0

msoilρgD
dθ z ̂, t ̂ð Þ

dt ̂
+

du ̂w z ̂, t ̂ð Þ
dt ̂

−
k

γwmsoilD
ffiffiffiffiffiffi
gD

p d2uŵ z ̂, t ̂ð Þ
dz ̂2

= 0 ð4Þ

and describe the slide dynamics (Eq. 2), heat generation and transfer (Eq. 3) and
excess pore pressure generation and diffusion (Eq. 4). (ρc)m is the specific heat of
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the saturated soil and Γ its thermal conductivity. The source term in Eq. 3 repre-
sents heat production within the shearband due to mechanical energy dissipation:

H ̂ z ̂, t ̂ð Þ= ρgD2

ρcð Þmθ02e
cos2 βð Þ− pŵh − u ̂max

w t ̂ð Þ� �
tanφ′v ̂ t ̂ð Þ ð5Þ

where e is the half-thickness of the shearband and β the slope angle.
The initial conditions are zero excess pore pressure and ambient temperature in

the whole domain, which consists of the upper half of the shearband and the
overlying sliding mass. The source terms of Eqs. 3 and 4 are only active within the
shearband. The mid-plane of the shearband is a symmetry boundary. The far
boundary is at ambient temperature and zero excess pore pressure.

3 Numerical Treatment

Equations 1–5 form a system of coupled, non-linear partial differential equations.
Past work has relied on centred-space forward-time (explicit) finite differences (e.g.
Vardoulakis [13]; Alonso et al. [1]; Cecinato et al. [2, 3]). However explicit inte-
gration is unstable and requires very small timesteps, here typically of the order of
10−5 s, to mitigate. This is tolerable when modelling the catastrophic phase over the
final few tens of seconds, but makes modelling of the long-term creeping behaviour
that may precede failure impractical. An alternative is to use an iterative, uncon-
ditionally stable implicit scheme that allows larger timesteps.

Two different classes of implicit methods were considered: Runge-Kutta and
linear multistep methods. Runge-Kutta methods generally require calculations at
intermediate points; these are only useful for the timestep in question. Linear
multistep methods calculate the solution at the next timestep using results of pre-
vious timesteps only, so were preferred as more efficient. Their accuracy depends
on the number n of previous steps used; higher n leads to a more expensive, more
accurate calculation. The general form of a linear multistep method is:

yi + n = h bnf ti + n, yi+ nð Þ + bn− 1f ti + n− 1, yi + n− 1ð Þ + ⋯ + b0f t1, y1ð Þð Þ ð6Þ

where y the unknown function, f its first derivative that is being integrated, and h
the integration step. We specifically considered implicit multistep methods, i.e. ones
where bn ≠ 0, also known as Adams-Moulton methods.

In principle we could employ an Adams-Moulton method of as high accuracy as
we wish; an n-step method is O(hn+1) accurate. However, Eq. 6 implies a constant
step equal to h. Therefore using an Adams-Moulton method of high order will
improve accuracy but deprive us of the ability to vary the size of the integration step
(timestep) as the calculation progresses. The latter is essential for modelling with
the same numerical scheme periods of prolonged creeping motion, where the
solution changes very little, as well as the last few seconds of catastrophic collapse,
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during which the solution varies dramatically. For this reason we resort to the
two-step Adams-Moulton method, which is the (implicit) trapezoidal rule: It is
O(h2) accurate and uses the results of the current and the previous timesteps only,
naturally allowing for a varying timestep. In principle, it is possible to produce
higher order Adams-Moulton methods that accommodate varying timestep, however
they will be significantly more complex and computationally costly, e.g. Skeel [11].

Using superscripts to denote the timestep and subscripts the spatial location,
Eq. 3 can be discretised in terms of original, rather than normalised, quantities thus:

θ j
i = θj− 1

i +
Δt

2 ρcð Þm
Hj− 1 +H j +

Γ
Δzð Þ2 θj− 1

i+1 − 2θj− 1
i + θj− 1

i− 1 + θj− 1
i+1 − 2θj− 1

i + θj− 1
i− 1

� �" #

ð7Þ

and similarly Eq. 4. Discretising Eq. 2 yields an equation of the general form:

v j = vj− 1 +
Δt
2

c0 + c1 tanϕ j + c2umax, jw tanϕ j	 
 ð8Þ

where c0, c1 and c2 depend on quantities already known from the previous
timestep. Equation 8 is strongly nonlinear as it involves the velocity vj, ln(vj), as
well as a cross term of ln(vj) and the unknown excess pore pressure at the shearband
centre. When solving the system of discretised equations using Newton-Raphson,
the strong nonlinearity of Eq. 8 impedes convergence unless Δt ∼ 10−3 s. This
makes modelling of long-term creeping motions problematic.

To mitigate a staggered solution scheme was devised: the system corresponding
to the discretised forms of Eqs. 3 and 4 was solved by Newton-Raphson using the
current approximation of the velocity; the dynamics equation was subsequently
solved for the velocity by Pegasus [4], a method of the regula falsi family that is
fast and efficient in finding roots of nonlinear equations. For the timestepping used
here it was sufficient to seek a solution in [v/2, 2v]. Using the new approximation of
the velocity Eqs. 3 and 4 were solved again, etc. After each iteration the residual
norms were calculated for the dynamic equation, the pore pressure and the tem-
perature equations; iterations continued till all were below 10−6.

The initial timestep was Δt = 1 s and was varied based on the rate of conver-
gence. It was increased by 10% following convergence within 6 iterations, while
decreased by 33% if no convergence was achieved after 20 iterations. The maxi-
mum timestep was 24 h and was possible to use for the most part of an analysis,
making the efficient modelling of years of creeping motion possible.

An additional challenge was the location of the far boundary. Previous work
considered that ambient values of temperature and excess pore pressure a small
multiple of the shearband thickness away. Modelling the creep phase should require
a larger domain, as heat and pore water will potentially have the time to travel
longer distances. Here, the far boundary was initially considered at a distance
10 times the shearband thickness. If, during the calculation, the value of either the
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excess pore pressure or the temperature next to the boundary was found to differ by
more than 10−10 kPa or °C respectively from the corresponding boundary condi-
tion, the domain was expanded by 100 times the shearband thickness before the
calculation continued. Therefore all models progressively became more expensive;
typical calculations started with about 300 unknowns but eventually involved in
excess of 300,000. Nevertheless, due to the direct, sparse multi-frontal solver [7]
used, all models could run on a desktop computer within hours.

4 Some Results

To investigate the effect of the rate parameter A of Eq. 1, a set of analyses is run
where the slide is triggered by increasing the initial pore pressure to a safety factor
of 0.99. Calculations end when a runout of twice the slide thickness is reached.
Figure 1 summarises the results. For A ≤ 10−4, catastrophic failure occurs almost
immediately. For A = 5 * 10−4 the slide creeps with near-constant velocity followed
by catastrophic failure, while for A > 5 * 10−4 the slide simply creeps. A threshold
value 6 * 10−4 > Acrit > 5 * 10−4 determines whether catastrophic failure will occur.
In this range, even a 2% difference in the rate parameter can have order-of magnitude
impact on the duration of the creep phase, although the predicted creep velocity is
less sensitive. For comparison, Fig. 1 also presents the (baseline) constant creep
velocity each slide would attain if thermal effects were ignored: it is evident that,
even where thermal effects do not eventually lead to catastrophic collapse, they still
increase slide velocity by at least one order of magnitude.

Fig. 1 Effect of rate parameter on creep velocity and blowup time
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5 Conclusions

A combination of rate dependent friction hardening and frictional heating suffices to
describe the prolonged creeping phase followed by sudden catastrophic collapse
that is seen in some landslides. Both regimes of movement can be modelled
numerically using the same implicit finite difference scheme with adaptive time
stepping. Rate dependent friction leads to a strongly nonlinear dynamics equation
which, when combined with heat and pore pressure generation and diffusion,
necessitates a staggered solution scheme. In addition, the location of the “far”
boundary needs to be continually adjusted to avoid numerical artefacts.

Finally, the predicted behaviour of a slide is very sensitive to the value of the rate
parameter; for a given runout distance, the latter determines whether catastrophic
collapse will eventually occur or not.
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Material Point Method Modelling
of Landslides with Coupled Segregation

Benjy Marks and Itai Einav

Abstract Landslides, debris flows and avalanches often exhibit strong segregation

during flow and deposition. The largest particles are usually found at the nose of the

avalanche, with moderate sized particles at the free surface, and smaller particles

at the base of the flow. At the same time, we know that the constitutive behaviour

of such a system is strongly influenced by the local average grainsize. In numerical

modelling of these flows, the coupling of the spatial heterogeneity and constitutive

behaviour has heretofore only been weakly coupled, if addressed at all. Here, we will

present a unified framework for coupling the feedback between these two phenomena

using the material point method. Several examples of landslide propagation will be

investigated. The effect of flow lubrication via segregation will be highlighted.

1 Introduction

Granular flows in nature, such as landslides, debris flows and avalanches, often are

composed of particles ranging in size from clay platelets to boulders. These particles

are constructed from a variety of materials, with significantly varying properties.

Unifying the description of these flows has proven to be a considerable challenge,

not least because of the spatial variability of the material [1].

One significant issue controlling the spatial variability of these flows is grainsize

segregation [2]. In the context of a gravity current, this phenomenon causes larger

particles to rise to the surface of the flow, and smaller particles to sink to the base.

A typical phenomenological description of this mechanism is that after a collision

between particles, a new void space is formed, which is preferentially filled by a

smaller particle falling into, as it is less likely that a large particle will fit into the

void than a small one.
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Whilst the physical mechanisms responsible for this phenomenon are still under

investigation [3], many analytic [4–6] and numerical [7–9] models exist. These mod-

els, however, generally treat separately the bulk flow and the segregation induced

flow, with some recent notable exceptions [10, 11]. This lack of coupling between

the bulk flow and the segregation prevents a systematic study of the bulk rheology

of the material as it segregates. Here, we develop a comprehensive framework for

studying grainsize evolution that is weakly coupled to the bulk rheology. This is

then implemented in a large deformation continuum solver, using the material point

method (MPM), which is distributed under as open source code (under the GPL3.0

license) and freely available at http://www.benjymarks.com.

2 Grainsize Dynamics

Representing a polydisperse granular material as a five dimensional continuum has

been the subject of several previous studies [8, 12], and for brevity only the salient

details will be discussed here. The novelty of this method is the inclusion of an

additional coordinate, s, into the continuum fields, which is used to represent the

grainsize distribution. For example, the concentration of each grainsize 𝜙(s), can

easily be stated. Following [13], and assuming that particles do not expend or shrink,

mass and momentum conservation in the entire domain can be written in a local form

as:

𝜕𝜌

𝜕t
+ ∇ ⋅ (𝜌𝐮) = 0, (1)

𝜕

𝜕t
(𝜌𝐮) + ∇ ⋅ (𝜌𝐮⊗ 𝐮) = 𝐅. (2)

where 𝜌 is the partial density of the material, 𝐅 the total force per unit volume and 𝐮
the velocity field. In a recently submitted manuscript [12], a significant development

was the formulation of a relationship between the segregation velocity, �̂� and the

bulk kinetic stress field, �̄�k, as

�̂� =
1 − s̄∕s
�̄�c0

∇ ⋅ �̄�k. (3)

where s is the grainsize, s̄ is the local mean grainsize, �̄� is the bulk density and c0 is

a rate which controls the rate of segregation.

This relationship allows us to describe the segregation phenomenon, once the

kinetic stress field is known. This field, which is closely related to the granular tem-

perature Tg, has recently been described using its own set of evolution equations

[14]. Here, we merely assume that the granular temperature scales to first order as

the rate-of-shear tensor, 𝐒, following [15], such that �̄�k ≈ c1�̄�𝐒, where c1 is a free

parameter (Fig. 1).
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Fig. 1 Schematic diagram of the material point method. A continuous body, represented by the

gray region, is discretised onto a set of material points (in blue). At each time step, information is

projected from the material points to the background mesh (shown in black). Continuum equations

are then solved on the background mesh, and the updated quantities projected back to the material

points

3 Material Point Method Implementation

A material point method code is implemented following [16], with additional para-

meters included to describe the segregation process. MPM has successfully been

used to model a variety of large deformation problems, from the macro scale (whole

landslides) [17] to the micro scale (modelling granular materials) [18]. There are at

least two options available for impregnating such a continuum solver with a grainsize

distribution. One option would be to add material points for each phase of material,

such that if a bidisperse material was modelled, there would be two distinct mate-

rial points, each carrying a proportion of the total mass. This method suffers from

a significant increase in computational time (for arbitrarily large polydispersity, the

computational time also scales arbitrarily large). This method also has difficulty deal-

ing with particle breakage (which is not explicitly modelled here), as material points

must lose mass, and new particles must be added to represent fragments. A second

option involves describing the grainsize distribution within each material point as

a discrete histogram of grainsize (or alternatively an analytic function, if required).

This is the method pursued here.

The grainsize distribution is discretised into Ns components, such that the solid

fraction in a particular grainsize bin sa ≤ s < sb can be expressed as 𝛷(si)
= ∫

sb
sa

𝜙(s) ds. This solid fraction is stored as an additional vector for each mater-

ial point, and at each time step is mapped from the material points to the background

mesh, along with the mass and momentum as:

mn
i =

∑

p
wn
ipmp, (4)

mn
i 𝐮

n
i =

∑

p
wn
ipmp𝐮ni , (5)

mn
i𝛷

n
i =

∑

p
wn
ipmp𝛷

n
p, (6)
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where n is the current time step, i the grid points, p the material points and wip
the interpolation weights. During the update stage of the MPM, a further evolution

equation is solved for 𝛷, as

𝜕𝛷

𝜕t
+ ∇ ⋅ (𝛷�̂�) = 0, (7)

which is the typical statement of conservation of grainsize [4], but extended from

bidisperse to polydisperse materials. Due to the non-linear nature of this equation

[5], and the requirement that for perfect segregation there must exist discontinuities

in the solution, we require a sophisticated numerical solution scheme that is capable

of properly accounting for this behaviour. The advective fluxes are solved for using

a high-resolution central scheme that is total variation diminishing, as described in

[19]. Putting together (7) and (3), we recover the governing equation for segregation

in this system:

𝜕𝛷

𝜕t
+ ∇ ⋅

(
𝛷c

(
1 − s̄

s

)
∇ ⋅ 𝐒

)
= 0, (8)

where c = c1∕c0. Using the formulation SD2 from [19], incremental changes of 𝛷,

termed 𝛥𝛷n+1
i , can be computed. The final step required to complete the simulations

is a mapping back from the nodal grainsize distribution 𝛷n
i to the new values at the

material points. This is done in the same manner as for position, 𝐱 and velocity, 𝐮,

by solving

𝐮n+1p = 𝐮np +
∑

i
wip𝐚ni 𝛥t, (9)

𝐱n+1p = 𝐱np +
∑

i
wip𝐮n+1i 𝛥t, (10)

𝛷n+1
p = 𝛷n

p +
∑

i
wip𝛥𝛷

n+1
i , (11)

where 𝐚ni is the acceleration calculated from conservation of momentum at each grid

point.

4 1D Flow

An initial test was conducted for the case of one dimensional laminar flow down

an inclined plane, with a rough basal plane that maintains 𝐮 = 0 at the base (but

not �̂� = 0). Initially, the material is at rest, and time t = 0, gravity of 9.81 m/s is

applied at an angle of 18 degrees. A two dimensional system is modelled, with

width of 2 grid cells in the x-direction (parallel to the flow) and 51 grid cells in the

y-direction (perpendicular to the slope), with the grid spacing in both directions equal

to 0.02 m, such that the flow is 1 m deep. In each grid cell, we initially seed 9 regu-
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Fig. 2 Changing average grainsize in a one dimensional laminar flow down an inclined plane

larly spaced material points, each with equal mass. The initial grainsize distribution

of each material point is chosen to be bidisperse, with 50% each of small and large

particles (nominally 0.5 and 1 mm, but note that only their relative sizes affect the

segregation velocity). A material density of 1000 kg/m
3

is used. This system models

a bidisperse fluid, initially homogeneous in space and in grainsize distribution.

We introduce rheological coupling by allowing the material properties to depend

on the grainsize distribution. For illustrative purposes, this work has been conducted

using a newtonian rheology (𝜏 = 𝜇�̇�), where the newtonian shear stress is propor-

tional to the average grainsize, as 𝜇s = 103s̄, such that material points composed of

primarily small particles will flow faster than larger ones. This is not designed to be

a rigorous test of the rheology of landslides.

The results of this test are shown in Fig. 2. It is observed that over time, large

particles segregate towards the free surface, and small particles collect at the base of

the flow. This is accompanied by a slight change in rheology.

5 Conclusions

An initial investigation has shown that it is possible to couple bulk flow and segre-

gation dynamics using the material point method. By solving the segregation equa-

tions directly on the background mesh, it is relatively straightforward to include these

effects. Once segregation is included in the description of the flow, rheological cou-

pling is trivial to model, given that there is a known relationship between the grain-

size distribution and the constitutive behaviour of the material. In the future, this

method will be used to study unsteady, two and three dimensional problems, such as

the formation of granular bores, and levee deposits, where in natural systems signif-

icant segregation is observed [20, 21].
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Microstructural Effects on Strain
Localization in a Multiscale Model
for Hydro-Mechanical Coupling

A.P. van den Eijnden, P. Bésuelle, F. Collin and R. Chambon

Abstract The formulation and implementation of a double-scale finite element

model for hydro-mechanical coupling in the framework of the finite element squared

method has allowed studying macroscale boundary value problems in a poromechan-

ical continuum. The macroscale constitutive relations are directly derived from the

micromechanical interaction between fluid and solid microstructure, captured in rep-

resentative elementary volumes. The application of this model in the simulation of a

biaxial test and a gallery excavation problem is presented here to give examples of the

model in strain localization problems. While using simple micromechanical models,

the results demonstrate the ability of the model to provide complex macroscale mate-

rial behaviour, that controls the initiation and development of the strain localization.

1 Introduction

The modelling of micromechanical behaviour of geomaterials has provided means

to describe material behaviour based on its microstructural constituents. This has

allowed phenomenological constitutive laws for continuous media to be replaced by

a direct simulation of the interaction between its microstructural constituents and

different phases. However, the application of these microscale models in direct
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numerical simulations of macroscale problems can lead to excessive computational

loads, as the length scale of common macroscale problems can be several orders of

magnitude larger than the length scale of the microstructural constituents. To over-

come this issue, the different scales can be treated in separate computations that are

coupled in a homogenization scheme, using the homogenized material behaviour of

so-called representative elementary volumes (REV) as the local material behaviour

of a continuum description of the macroscale problem. As such, coupling between

the scales of observation is used to take account of the microstructure in an averaged

sense.

This paper presents some of the recent advances in the doublescale modelling

of hydro-mechanical coupling in the framework of computational homogenization.

A finite element squared (FE
2
) formulation is used to derive the poromechanical

continuum behaviour from a microscale model for microstructural solid-fluid inter-

action. After a general introduction of the modelling concept, examples of numerical

simulations of laboratory tests and engineering structures are given. The examples

are used to demonstrate the results obtained with the model and highlight the inter-

play between microstructural characteristics and macroscale initiation and propaga-

tion of strain localization.

2 The Doublescale Model

On the macroscale, a poromechanical continuum is formulated, of which the mechan-

ical part of the solution of the macroscale boundary value problem is regularized

by a local second gradient paradigm [3, 8]. This implicitly prescribes the internal

length scale, needed for computations of softening behaviour without mesh depen-

dency. For the second gradient part of the material behaviour, a linear-elastic consti-

tutive relation is used [2, 3, 11], whereas the classical HM-coupled part is derived

by means of computational homogenization from the computed equilibrium state

of the REV [5]. For each integration point in the FE computation, an equilibrium

state of the corresponding REV is computed with boundary conditions dictated by

the local kinematics of the iterative macroscale test solution. From this equilibrium

state, a consistent tangent operators (with respect to the rate of change of the test

solution kinematics) and the homogenized response (stress state, fluid content, fluid

mass flux) is derived by means of computational homogenization [5]. In this way, the

REV boundary conditions and the computational homogenization for the coupling

from macro to micro and from micro to macro respectively.

A microscale model was formulated in continuation of the model developments in

Grenoble [1, 7, 10], in which the microstructure is modeled as an assembly of solid

grains using the finite element method. Grains are considered elastic and the inter-

faces between grains are modelled by triple-noded interface elements to account for

relative displacements between grains and fluid flow in the resulting interface chan-

nels (Fig. 1). Cohesive normal and tangential traction components Tn and Tt, acting

over the interfaces between the grains, are described independently as functions of
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deformable  
solid grains fluid flux

fluid phase

Fig. 1 Microscale model concept of elastic grains separated by cohesive interfaces [4]

Fig. 2 Interface damage model for normal and tangential cohesion between grains over the inter-

face. Penalization is used to account for contact between grains under local compression [5]

components 𝛥un and 𝛥ut of the relative displacement between sides of the interface.

A simple damage formulation is used for interface cohesion, introducing softening

in the computed material behaviour (Fig. 2). Although coupling between the two

components of cohesion are not used in the microscale formulation, confining stress-

dependency of the macroscale behaviour is found as an effect of interlocking of the

grains at the microscale. Nevertheless, interface mechanical behaviour can easily be

modified within the same framework of homogenization.

A pore channel network is formed by the interfaces between the grains, allowing

pore fluid to percolate. Fluid flow is modelled by means of one-dimensional channel

elements with equivalent hydraulic conductivity, based on Poiseuille flow between

smooth parallel plates. In addition, the water content depends on the relative volume

of the pore space that is formed by the opened interfaces.

Upscaling from the equilibrated microscale model to the local macroscale

response terms and constitutive behaviour is obtained through computational homog-

enization [9, 12]. This framework was extended to the case of hydro-mechanical

coupling in the steady-state microscale model presented above, and provides the

homogenized response of the REV as well as the tangent operators consistent to the

current loading direction [5]. The classical, first order part of the material behaviour

is thereby derived completely from the micromechanical model, without the need

for determining derivatives of state by means of numerical perturbations.



www.manaraa.com

222 A.P. van den Eijnden et al.

θ REV = 0◦ θ REV = 30◦ θ REV = 60◦ θ REV = 90◦

0.112

0.000

V
M

 e
qu

iv
al

en
t s

tra
in

A

0.126

A
C

B

D

0.049

0.000

V
M

 e
qu

iv
al

en
t s

tra
in

A

0.108

0.000

V
M

 e
qu

iv
al

en
t s

tra
in

A

R
E
V
po
in
tA

Element 57, I.P. 1

Element 42, I.P. 2

Element 55, I.P. 2

Element 97, I.P. 3

Fig. 3 Deformed macroscale samples and corresponding microstructures after loading at axial

strain rate �̇�a = 1 × 10−8. Symbols ♦ and ♦ represent the interface state in softening and decohe-

sion respectively [5]

3 Simulations of a Biaxial Compression Test

A biaxial compression test of a fluid-saturated material was modeled under tran-

sient conditions. The REV characterizing the material microstructure was varied in

orientation with respect to the sample orientation to have different orientations of

anisotropy. No confining pressure was applied and samples were drained at the bot-

tom and top; a weak element was introduces at both lower corners to attract the

initiation of strain localization. The specific microstructure, including an average

elongation to represent the effect of a bedding plane, is rotated between the different

samples to obtain different orientations of the anisotropic behaviour with respect to

the loading direction.

Figure 3 shows the deviatoric strain fields of four of these tests in post-peak con-

ditions. A deformed microstructure is given for each test, corresponding to a charac-

teristic point A in the shear band that has developed. Mesh-independent results for

shear bands are obtained through the regularization of the macroscale solution.

4 Simulations of the Excavation of a Tunnel

The excavation damaged zone around a deep tunnel was modeled. The excavation

process in a 2D plane strain model is simulated by gradually reducing the initial

stress state (𝜎v = −12.7 MPa, 𝜎h = −16.1 MPa, p = 4.7 MPa) at the future tunnel
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Fig. 4 Initiation of strain localization for material behaviour derived from different microstruc-

tures. Colorscale represents deviatoric strain rate, normalized against relative stage of unloading

on tunnel wall [6]

wall, until zero-stress state is reached at the tunnel wall after 28 days. Four different

microstructures are used to characterize the material microstructure, generated using

a Voronoï-based algorithm [6]. Although not large enough to give statistically repre-

sentative elementary volumes, the specific realizations of microstructures represent

macroscale material behaviour related to their specific type of granular assembly

and grain geometry and the resulting difference in macroscale behaviour is studied

in relation with initiation of strain localization.

Figure 4 shows four REVs with microstructure, rotated to align the peak strength

with the reference axes. The macroscale strain rate fields at the end of the excavation

are given for simulations with each of these microstructures. The strain rate fields

show the localized activity at the final stage of excavation, controlled directly by the

microstructure in the REV. Building further on these observations, the influence of

the microstructure on the macroscale initiation of strain localization can be explored.

In addition to the examples of strain localization given above, the presented simu-

lations can be used to study the hydro-mechanical coupling in the doublescale model.

As part of the hydro-mechanical coupled behaviour, the macroscale fluid transport

phenomena can be derived from the micromechanical model of solid-fluid interac-

tion. Both controlled by the deformation of the microstructure, the evolution of the

permeability tensor and the zones of strain localization can be related.

5 Conclusions

The development and implementation of a finite element squared method for hydro-

mechanical coupling has provided a doublescale approach for modelling strain local-

ization in fluid-saturated rock-like materials. The given examples demonstrate the



www.manaraa.com

224 A.P. van den Eijnden et al.

ability of the model to account for complex macroscale material behaviour, includ-

ing anisotropy and softening. The regularization of the solution by a local second

gradient paradigm provides mesh-objective macroscale solution to problems involv-

ing strain localization. As such, a conceptual demonstration of the application of a

finite element squared method for hydro-mechanical coupling is given for problems

at semi-engineering scale.
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Review and Comparison of Numerical
Implementations for Cosserat Plasticity

Fahad Gulib and Stefanos-Aldo Papanicolopulos

Abstract The seminal paper of Mühlhaus and Vardoulakis (1987) led to an

extensive study of generalised continuum plasticity models for numerical modelling

of localisation of deformation. While different models and numerical implementa-

tions have been proposed in the literature, all capable of capturing the initial devel-

opment of localisation, there is a lack of comparative studies to highlight the differ-

ences between models and their numerical implementations. In this work we present

a review of existing numerical implementations of Cosserat plasticity models. We

then implement a number of these models and finite elements within a commer-

cial code to provide a comparison of the localisation behaviour based on numerical

results of a simple test.

1 Introduction

The seminal paper of [13] demonstrated the ability of Cosserat plasticity to model

the localisation of deformation in geomaterials. Based on this, many authors have

presented numerical simulations of localisation in geomaterials using finite element

implementations of Cosserat plasticity models.

All these numerical simulations successfully model localisation, however we are

not aware of any detailed comparison of the different constitutive models proposed.

While [10, 11] made a comparative study of integral-type and gradient-type plastic-

ity models (for one-dimensional problems), no such studies were found for Cosserat

continua.
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Finite elements for Cosserat continua must separately discretise and interpolate

the displacement and the rotation fields. For a given shape (e.g. triangle or quadri-

lateral in two dimensions) it is therefore necessary to select the interpolation used,

and therefore the type and location of the degrees of freedom, for the displacements

and the rotations; clearly these two interpolations can be different. Additionally, it

is necessary to select the spatial integration scheme to be used. While this can be

selected based solely on the displacement field, using a scheme that avoids locking

and hourglassing, the way integration applies to the two different fields should also

be taken into account in determining the appropriate scheme.

We briefly review here numerical implementations of Cosserat plasticity, high-

lighting their main aspects in terms of the constitutive models and the finite element

formulation used. We then implement some of these models and elements and com-

pare their numerical results for three different simulations presented in the literature.

The results obtained provide insight into which elements perform better.

2 An Overview of Proposed Constitutive Models

Table 1 shows the main publications surveyed here, indicating the type of constitutive

model employed. Von Mises and Drucker-Prager models are extended into a Cosserat

formulation by modifying the quantity J2, which in the classical formulation is the

second deviatoric invariant of the stress, to include the couple stresses (scaled by an

appropriate internal length parameter) and the antisymmetric part of the Cosserat

stress. The combination of the symmetric and antisymmetric parts of the stress in J2
is however not unique, with two main choices (static and kinematic) being proposed.

Alsaleh [3] also uses a generalised second invariant.

The generalisation of Mohr-Coulomb models is less obvious. Manzari [12] mod-

ifies the J2 invariant, but computes the Lode angle 𝜃 based only on stresses, while

[16] computes 𝜃 using the modified J2 invariant. Adhikary et al. [1, 2] use a Mohr-

Coulomb yield surface that does not involve the couple stresses. More details on

two-dimensional Cosserat Mohr-Coulomb models are given by [18].

3 A Review of Proposed Cosserat Finite Elements

Table 1 lists the elements proposed for Cosserat elasticity and plasticity, and the

spatial integration scheme employed. The interpolation of displacements/rotations

can be linear/linear, quadratic/linear or quadratic/quadratic, resulting in the trian-

gular elements COS3, COS6(3) and COS6 and in the rectangular elements COS4,

COS8(4) and COS8. A “serendipity” (bi-)quadratic interpolation is used, though a

Lagrangian interpolation is also possible to obtain COS9(4) and COS9 elements.
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Table 1 Summary of surveyed literature on Cosserat finite element analysis, indicating constitu-

tive model, element type and integration scheme

References Constitutive

model

Element Integration

scheme

Nakamura et al. [15] Elasticity COS3 Not stated
Nakamura and Lakes [14] Elasticity COS3/4 Not stated
Providas and Kattis [20] Elasticity COS3/6/6(3) Analytical

Zhang et al. [24] Elasticity COS4/8/8(4) Not stated
de Borst [5] Von Mises COS6 Cubic

de Borst and Sluys [7] Von Mises COS6 Quartic

Tejchman and Wu [23] Von Mises COS3 Quadratic

Sharbati and Naghdabadi [21] Von Mises COS4 Not stated
Papanastasiou and Vardoulakis [17] Drucker-Prager COS8 Quintic

de Borst [6] Drucker-Prager COS6 Not stated
Sulem and Cerrolaza [22] Drucker-Prager COS4 Not stated
Iordache and Willam [9] Drucker-Prager COS3 Unclear
Arslan and Sture [4] Drucker-Prager COS4 cubic (SR)

Peng et al. [19] Drucker-Prager COS8 Quintic

Adhikary et al. [2] Mohr-Coulomb COS8 Quintic

Manzari [12] Mohr-Coulomb COS4 Not stated
Adhikary and Dyskin [1] Mohr-Coulomb COS8? Not stated
Papamichos [16] Mohr-Coulomb COS8 Not stated
Alsaleh [3] Lade-Kim COS4 Cubic (SR)

For Cosserat elasticity, [20] for triangles and [24] for quadrilaterals both show that

all elements pass the patch test, with COS6(3) slightly more accurate than COS6 and

COS8(4) slightly less accurate than COS8, while COS3 and COS4 in each case have

the lowest accuracy. For Cosserat plasticity, however, we are not aware of similar

comparisons.

Indeed, we are not aware of any Cosserat plasticity results where quadratic/linear

interpolation is used. Sulem and Cerrolaza [22] suggests that a quadratic/linear inter-

polation should be used (but uses linear/linear interpolation), while [2] suggest that

the same order of interpolation should be used for both kinematic fields. de Borst

[5] mentions numerical experimentation for a COS6(3) element, but only shows

results for COS6, while [9] present results only for COS3, though they also men-

tion COS6(3) and COS6 elements.

Papanastasiou and Vardoulakis [17] mention that a comparison of results shows

that the COS9 element is slightly better than the COS8 element, but the difference

is negligible and thus they use the computationally cheaper COS8 element.

From Table 1 it is also evident that not enough information is generally given con-

cerning the spatial integration scheme used, and no detailed comparisons between

different schemes are presented. de Borst [5] mentions that COS6 requires a quartic
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integration scheme to eliminate the possibility of zero-energy modes, but uses a cubic

scheme, and also mentions that a COS6(3) element only needs quadratic integration

without showing detailed results. Selective reduced (SR) integration is used by some

authors for COS4 elements, but no reduced integration is mentioned for COS8 ele-

ments (a discussion of reduced integration for quadratic/quadratic Cosserat elements

is given by [8] for elastic Cosserat plates).

4 Implementation and Comparison

We have implemented in the finite element code Abaqus the three Cosserat quadri-

laterals in Table 1, with both full and reduced integration. We therefore obtain ele-

ments COS4F and COS4R with cubic (2 × 2) and linear (1 × 1) Gauss integration, as

well as elements COS8F/COS8(4)F and COS8R/COS8(4)R with quintic (3 × 3) and

cubic (2 × 2) integration respectively. We have additionally implemented a COS4SR

element with selective reduced integration [3, 4].

The widely used benchmark of biaxial (plane strain) compression is used to com-

pare the different finite element formulations for Von Mises and Drucker-Pragel

models. The first benchmark test is the Von Mises model described in [5], for the

case l∕H = 1∕12 (where l is the internal length and H is the height of the specimen).

Figure 1 shows a detail of the load-displacement curve during the softening stage.

Elements COS8F, COS8R, COS8(4)F and COS8(4)R give practically indistinguish-

able results, all very slightly stiffer than the ones reported by [5], so only COS8F is

shown. Element COS4SR gives a slightly stiffer but still very similar result, while

COS4F gives a much stiffer behaviour. COS4R gives results similar to the quadratic

displacement elements, but suffers from hourglassing.

A similar set of results is obtained for the Von Mises model of [21] (biaxial test

with l∕H = 1∕60), as shown in Figs. 1 and 2. Once more COS4F is overly stiff, while

COS4R gives a reasonable load-displacement graph but suffers from hourglassing;

COS8(4)R gives an almost identical load-displacement curve (not shown) but with

no hourglassing. Elements COS8(4)F and COS8F give slightly different, but still

very close results, while COS4SR is again stiffer, more visibly so than in the previous

case. Except for COS4F, all other elements give the correct localised result.

The third benchmark (not shown here) uses the Drucker-Prager model and the

biaxial simulation presented by [6]. We initially simulate a completely homogeneous

material. Even in this case, however, only element COS4F gives the homogeneous

solution, while the other tested elements show localisation of deformation. Elements

COS8F, COS8R and COS8(4)R all give very similar results, similar to but stiffer than

the localised behaviour given by [6], with COS4SR giving an even stiffer localised

behaviour. Introducing an imperfection as described in [6] leads to a different behav-

iour, with all tested elements showing a less stiff behaviour and a more diffuse fail-

ure mode. By reducing the internal length it was however again possible to obtain

localised results.
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Fig. 1 Detail of the load-displacement curves for the two Von Mises models (load scaled by initial

cross section area and yield stress, displacement scaled by initial specimen height)
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Fig. 2 Deformed meshes and contours of equivalent plastic strain for the model by [21] (deforma-

tion is scaled, with non-uniform scaling for COS4R in the x direction)

5 Conclusions

Elements COS4F and COS4R are not recommended as they give stiff (locking)

behaviour and hourglassing, respectively. All elements with quadratic interpolation

of displacements give comparable results with no indication of numerical issues;

in this case the quadratic/linear reduced integration element COS8(4)R would be

preferable as being the least expensive computationally. The even less expensive

linear/linear selective reduced integration element COS4SR shows good numerical

behaviour, however it’s deviation from the other results necessitates further inves-

tigation. For the case of the Drucker-Prager model, it is seen that introduction of

an imperfection changes the results significantly, though the relative performance of

different elements does not seem to be greatly affected.
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This work identifies the need for comparative studies of Cosserat finite element

implementations for plasticity models and forms part of a wider research effort to

provide guidance on the appropriate use of generalised continuum models.
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Sand to Mud to Fording: Modeling
and Simulation for Off-Road Ground
Vehicle Mobility Analysis

Dan Negrut and Hammad Mazhar

Abstract This contribution highlights modeling and numerical solution techniques

that enable the simulation of ground vehicles operating in off-road conditions. We

briefly outline the equations of motion governing the time evolution of complex sys-

tems such as, for instance, large collections of granular material or full vehicles.

Herein, we demonstrate how these equations of motion have been used in an open

source multi-physics simulation software called Chrono to investigate the dynamics

of wheeled and tracked vehicles operating on granular material. Next, we briefly dis-

cuss the fluid-solid interaction problem, which comes into play, for instance, when

simulating fording operations in which a vehicle negotiates a body of water. The

two salient attributes of the approach proposed are reliance on differential algebraic

inequalities to model the dynamics of solid and fluid phases; and, leverage of parallel

computing to handle systems with millions of degrees of freedom.

Keywords Multi-physics modeling and simulation ⋅ Rigid and flexible multi-body

dynamics ⋅ Friction and contact ⋅ Fluid-solid interaction ⋅Granular dynamics ⋅Vehi-

cle dynamics ⋅ Parallel computing

1 Large Scale Displacements/Rotations via Many-Body
Dynamics

Herein, the set of generalized coordinates used to position and orient a rigid body

j in the 3D Euclidean space are 𝐫j ∈ ℝ3
and 𝜖j ∈ ℝ4

[8]. The former provides

the absolute position of the center of mass of body j, while the latter represents

a set of Euler parameters (quaternions) that characterize body orientation in a

global reference frame. The set of generalized coordinates for a system of nb bod-

ies works out to be 𝐪 =
[
𝐫T1 , 𝜖

T
1 ,… , 𝐫Tnb , 𝜖

T
nb

]T
∈ ℝ7nb and their time derivatives �̇� =
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[
�̇�T1 , �̇�

T
1 ,… , �̇�Tnb , �̇�

T
nb

]T
∈ ℝ7nb . Rather than using �̇� to pose the Newton-Euler equa-

tions of motion, the array 𝐯 =
[
�̇�T1 , �̄�

T
1 ,… , �̇�Tnb , �̄�

T
nb

]T
∈ ℝ6nb is used since it leads

to: (i) a smaller problem; and (ii) a constant, symmetric and positive definite mass

matrix. There is a simple linear transformation that for each bodyB relates its angular

velocity expressed in the body-fixed reference frame, �̄�B, to the time derivatives of

the Euler parameters �̇�B. Specifically, �̄�B = 2𝐆(𝜖B)�̇�B, where the entries in the matrix

𝐆 ∈ ℝ3×4
depend linearly on the Euler parameters 𝜖B [8]. Defining the block diag-

onal matrix 𝐋(𝐪) ≡ diag

[
𝐈3×3,

1
2
𝐆T (𝜖1),… , 𝐈3×3,

1
2
𝐆T (𝜖nb)

]
∈ ℝ7nb×6nb , where 𝐈3×3

is the identity matrix, yields �̇� = 𝐋(𝐪)𝐯. For the fluid phase in a system of nf objects

each fluid marker or rigid body k consists of a position 𝐫 ∈ ℝ3
and a velocity �̇� ∈ ℝ3

.

The fluid phase only has translational degrees of freedom and does not rotate, in this

document objects that have six degrees of freedom will be denoted as 6 degrees of

freedom (dof) and objects with three degrees of freedom as 3dof.

Consider the contact between two bodies A and B represented in Fig. 1. Assuming

that the body geometries are regular at the contact point, the contact point along with

the shared tangent plane are used to define two local reference frames, one for each

body. For body A, the normal 𝐧i,A at contact point i is chosen to be perpendicular

on the tangent plane at the shared contact point and to point towards the exterior of

body A. Two mutually perpendicular unit vectors 𝐮i,A and 𝐰i,A are chosen to define

a right-hand local reference frame associated with contact i on body A. A similar

sequence of steps is followed to define a local reference frame for body B based on

𝐧i,B, 𝐮i,B, 𝐰i,B ∈ ℝ3
. The Lagrange multiplier �̂� associated with contact i is used to

Fig. 1 Contact i between

two bodies

A,B ∈ {1, 2,… , nb}
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pose a complementarity condition in relation to the gap (distance) 𝛷 between bodies

A and B: 0 ≤ �̂�i,n ⟂ 𝛷i(𝐪) ≥ 0.

In what follows, by convention, 𝛼i ≡ 𝛼i,A, for 𝛼 ∈ {𝐧,𝐮,𝐰}. The force associated

with contact i can then be decomposed into the normal component, 𝐅i,N = �̂�i,n𝐧i, and

the tangential component, 𝐅i,T = �̂�i,u𝐮i + �̂�i,w𝐰i, where the multipliers �̂�i,n > 0, �̂�i,u,

and �̂�i,w represent the magnitude of the force in each direction. The friction forces

are assumed to satisfy the Coulomb dry-friction model, which can be expressed as

a set of three conditions:

√
�̂�
2
i,u + �̂�

2
i,w ≤ 𝜇i�̂�i,n, ||𝐯i,T ||

(√
�̂�
2
i,u + �̂�

2
i,w − 𝜇i�̂�i,n

)
= 0,

and ⟨𝐅i,T , 𝐯i,T⟩ = −||𝐅i,T || ||𝐯i,T ||, where 𝐯i,T represents the relative tangential veloc-

ity between bodies A and B at the point of contact. These equations represent the

first order Karush-Kuhn-Tucker optimality condition for the following optimization

problem in two dummy variables y, z ∈ ℝ:

(
�̂�i,u, �̂�i,w

)
= argmin√

y2+z2≤𝜇i �̂�i,n

𝐯Ti,T
(
y𝐮i + z𝐰i

)
.

The force at the ith contact point can be expressed as 𝐅i = 𝐅i,N + 𝐅i,T = �̂�i,n𝐧i +
�̂�i,u𝐮i + �̂�i,w𝐰i ∈ 𝛶i, where 𝛶i is a 3D cone of slope tan−1 𝜇i, i.e., 𝛶i = {

[
x, y, z

]T ∈
ℝ3|√y2 + z2 ≤ 𝜇ix}, oriented along 𝐧i and with its tip at the contact point.

The Newton-Euler equations of motion [2, 24] then assume the following expres-

sion [23]:

Generalized positions

⏞⏞⏞

𝐪 = 𝐋(𝐪)
⏟⏟⏟

Velocity transformation matrix

𝐯

(1a)

𝐌�̇� = 𝐟(t(l),𝐪(l), 𝐯(l))
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

Applied & Coriolis force

−

Reaction force

⏞⏞⏞

𝐆(𝐪, t)�̂�+
∑

i∈(q(l) ,𝛿)

(
�̂�i,n 𝐃i,n + �̂�i,u 𝐃i,u + �̂�i,w 𝐃i,w

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Frictional contact forces

(1b)

0 = 𝐠(𝐪, t)
⏟⏟⏟

Bilateral constraints

(1c)

i ∈ (q(l), 𝛿) ∶ 0 ≤

Unilateral constraint

⏞⏞⏞

𝛷i(𝐪) ⟂ �̂�i,n ≥ 0
(1d)(

�̂�i,u, �̂�i,w
)
= argmin√

𝛾i,u
2+𝛾i,w2

≤𝜇i𝛾i,n

𝐯T
(
𝛾i,u 𝐃i,u + 𝛾i,w 𝐃i,w

)
,

(1e)

where the tangent space generators 𝐃i = [𝐃i,n, 𝐃i,u, 𝐃i,w] ∈ ℝ6nb×3 are defined as

𝐃T
i =

[
𝟎 … − 𝐀T

i,p 𝐀T
i,p𝐀A ̃̄𝐬i,A 𝟎 … 𝟎 𝐀T

i,p −𝐀T
i,p𝐀B ̃̄𝐬i,B … 𝟎

]
, (2)
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where 𝐀i,p = [𝐧i,𝐮i,𝐰i] ∈ ℝ3×3
is the orientation matrix associated with contact i;

𝐀A = 𝐀
(
𝜖A
)

and 𝐀B = 𝐀
(
𝜖B
)

are the rotation matrices of bodies A and B respec-

tively; and the vectors �̄�i,A and �̄�i,B represent the contact point positions in body-

relative coordinates as illustrated in Fig. 1. Finally, the set of active and potential

unilateral constraints is denoted by (𝐪, 𝛿) and is defined based on the bodies that

are mutually less than a distance 𝛿 ≥ 0 apart.

For interaction between a 6dof rigid body and a frictionless 3dof rigid body

the equations can be greatly simplified. Tangential friction forces do not need to

be computed and as a result the size of the problem is reduced from three con-

straints per contact to one constraint. A 3dof does not experience torque and the

contact position only needs to be computed in body-relative coordinates for the 6dof

rigid body. This means that for a contact between a 6dof object and a 3dof friction-

less object 𝐃i simplified to 𝐃i = [𝐃i,n, 𝐃i,u, 𝐃i,w] ∈ ℝ6nb×1 for the 6dof body and

𝐃i = [𝐃i,n, 𝐃i,u, 𝐃i,w] ∈ ℝ3nb×1 for the 3dof body. For a contact between two 3dof

bodies each body contributes a Jacobian of size 𝐃i ∈ ℝ3nb×1 for a contact.

2 Fluid-Solid Interaction Modeling via Smoothed Particle
Hydrodynamics

The continuity and momentum equations associated with the fluid dynamics problem

assume the form [6]

D𝜌
dt

= −𝜌∇⋅𝐯 (3a)

D𝐯
dt

= −1
𝜌

∇p + 𝜇

𝜌

∇2𝐯 + 𝐟 , (3b)

where 𝜇 is the fluid viscosity, 𝜌 is fluid density, 𝐯 and p are the flow velocity and pres-

sure, respectively, and 𝐟 is the body force. Assuming a Newtonian and incompress-

ible flow, the first equation translates either into
D𝜌
dt

= 0, or equivalently, imposing

a divergence-free flow condition, into ∇ ⋅ 𝐯 = 0.

The approach embraced in Chrono for the spatial discretization of the Navier-

Stokes equations draws on the Smoothed Particle Hydrodynamics (SPH) method-

ology [5, 10], a meshless method that dovetails well with the Lagrangian model-

ing perspective adopted for the dynamics of the solid phase. The term smoothed in

SPH refers to the approximation of point properties via a smoothing kernel func-

tion W, defined over a support domain S. This approximation reproduces func-

tions with up to second order accuracy, provided the kernel function: (i) approaches

the Dirac delta function as the size of the support domain tends to zero, that is

limh→0 W(𝐫, h) = 𝛿(𝐫), where 𝐫 is the spatial distance and h is a characteristic length

that defines the kernel smoothness; (ii) is symmetric, i.e., W(𝐫, h) = W(−𝐫, h); and

(iii) is normal, i.e., ∫S W(𝐫, h)dV = 1, where d V denotes the differential volume.
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The term particle in SPH terminology indicates the discretization of the domain by

a set of Lagrangian particles. To remove ambiguities caused by the use of the term

rigid particles in the context of FSI problems, the term marker is also used herein to

refer to the SPH discretization process. Each marker a has mass ma associated with

the representative volume d V and carries all of the essential field properties. As a

result, any field property at a certain location is shared and represented by the mark-

ers in the vicinity of that location [25]. Within this framework, Eqs. (3a) and (3b)

are discretized at an arbitrary location 𝐱a within the fluid domain as [16]:

d𝜌a
dt

= 𝜌a
∑
b

mb

𝜌b

(
𝐯a − 𝐯b

)
⋅∇aWab (4a)

d𝐯a
dt

= −
∑
b
mb

[(
pa
𝜌a

2 +
pb
𝜌b

2

)
∇aWab −

(𝜇a + 𝜇b)𝐱ab⋅∇aWab

�̄�
2
ab(x

2
ab + 𝜀h2)

𝐯ab

]
+ 𝐟a , (4b)

which are augmented by the kinematic differential equation

d𝐱a
dt

= 𝐯a, (5)

which is to update the location of the discretization markers. In the above equations,

quantities with subscripts a and b are associated with markers a and b, respectively;

𝐱ab = 𝐱a − 𝐱b, 𝐯ab = 𝐯a − 𝐯b, Wab = W(𝐱ab, h), �̄�ab is the average density of markers

a and b, ∇a is the gradient with respect to 𝐱a, i.e., 𝜕∕𝜕𝐱a, and 𝜀 is a regularization

coefficient to prevent infinite reaction between markers sharing the same location.

We have experimented with two approaches for solving the SPH-based solution

of the FSI problem. The first one relies on a equation of state that ties the expression

of the pressure p to the value of the density 𝜌. Specifically, under the assumption of

handling an incompressible flow, we expect that 𝜌 = 𝜌0 = const. Then, the pressure

is introduced in the problem as a forcing term that corrects any deviation in density

from the nominal value 𝜌0. This is the so called weakly compressible model, namely

finding 𝜌 via Eq. (4a) followed by an equation of state to update pressure p [15]:

p =
c2s𝜌0
𝛾

{(
𝜌

𝜌0

)
𝛾

− 1
}

, (6)

where 𝛾 tunes the stiffness of the pressure-density relationship, and cs is the speed of

sound. The value cs is adjusted depending on the maximum speed of the flow, Vmax,

to keep the flow compressibility below some arbitrary value. Typically, 𝛾 = 7 and

cs = 10Vmax, which allows 1% flow compressibility [15].

In a second approach, we experimented with constraint fluids [4], which is an

approach that leverages SPH and enforces incompressibility as a many-body density
constraint between a fluid particle and its neighbors. Depending on the numerical

discretization, a corrective impulse [4] or a position correction [11] is applied to each

marker to enforce the density constraint. This holonomic constraint tries to match the



www.manaraa.com

240 D. Negrut and H. Mazhar

current density of a fluid marker 𝜌i with the target density 𝜌0, which results in the

following indicator function

di =
𝜌i − 𝜌0

𝜌0
. (7)

These kinematic constraint equations are the analog of the conditions in Eq. (1c).

Fortunately, this analogy with the dynamics of the solid phase goes one step fur-

ther. Indeed, for the fluid-solid interaction problems, a non-penetration; i.e., unilat-

eral, constraint is imposed between a fluid particle and a solid thus enforcing a non-

penetration condition between the fluid and solid. These non-penetration unilateral

constraints are the analog of the conditions in Eq. (1d). Coupling in this manner is

straightforward and allows interaction between fluid and rigid bodies in a physically

accurate manner using one modeling framework; i.e., that provided by differential

algebraic inclusion problems.

3 Overall Numerical Solution Methodology

In what follows we will compound the many-body dynamics equations of motion of

Eq. (1) with the equations of motion that capture the fluid dynamics. The dynamics

of the fluid phase will be described using the constrained-fluid approach; i.e., using

Eq. (7), such that the overall set of equations of motion is posed as a differential

algebraic inclusion problem. The coupled fluid-solid approach that falls back on the

equation of state of Eq. (6) is not discussed here but is described at length in [18–20].

The numerical solution methodology for the aforementioned differential algebraic

inclusion problem, which captures both the dynamics of the fluid and solid phases,

is built around the following two decisions: (D1) following the approach proposed

in [24], a symplectic half implicit Euler methods is used to discretize the dynamics;

and (D2) a zero gap non-penetration condition between bodies in mutual contact is

enforced at the new time step t(l+1). Given a consistent position 𝐪(l) and velocity 𝐯(l)
at time t(l), the numerical solution at t(l+1) = t(l) + h is obtained by solving the fol-

lowing mathematical programming problem with complementarity and equilibrium

constraints [12]:

Generalized positions

⏞⏞⏞

𝐪(l+1) = 𝐪(l) +

Step size

⏞⏞⏞

𝛥t 𝐋
⏟⏟⏟

Velocity transformation matrix

(𝐪(l))𝐯(l+1) (8a)

𝐌(

Generalized speeds

⏞⏞⏞

𝐯(l+1) − 𝐯(l)) = 𝛥t𝐟(t(l),𝐪(l), 𝐯(l))
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

Applied impulse

−

Joint impulse

⏞⏞⏞⏞⏞⏞⏞

𝐆(𝐪(l), t)𝜆−

Density Impulse

⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝐃d(𝐪(l), t)𝛾d +

Contact Impulse

⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝐃c(𝐪(l), t)𝛾c −

Boundary Impulse

⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝐃b(𝐪(l), t)𝛾b

(8b)
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0 = 1
𝛥t

𝐠(𝐪(l), t)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

Stabilization term

+𝐆T𝐯(l+1) + 1
𝛥t

𝐠t (8c)

− 𝐃d
T𝐯(l+1) = 𝐠𝐝(𝐪(l), t)

⏟⏞⏟⏞⏟

Stabilization term

(8d)

j ∈ (q(l), 𝛿) ∶ 0 ≤

Stabilization term

⏞⏞⏞⏞⏞⏞⏞⏞⏞

1
𝛥t

𝛷b,j(𝐪(l)) +𝐃T
b,j,n𝐯

(l+1) ⟂ 𝛾b,j,n ≥ 0 (8e)

i ∈ (q(l), 𝛿) ∶ 0 ≤

Stabilization term

⏞⏞⏞⏞⏞⏞⏞⏞⏞

1
𝛥t

𝛷c,i(𝐪(l)) +𝐃T
c,i,n𝐯

(l+1) ⟂ 𝛾c,i,n ≥ 0 (8f)

(
𝛾c,i,u, 𝛾c,i,w

)
= argmin√

𝛾c,i,u
2+𝛾c,i,w2

≤𝜇i𝛾c,i,n

𝐯T
(
𝛾c,i,u 𝐃c,i,u + 𝛾c,i,w 𝐃c,i,w

)
(8g)

Here, 𝜆 represents a constraint impulse associated with a bilateral constraint,

𝛾c, 𝛾d, 𝛾b are constraint impulses associated with contacts, density constraints and

boundary contacts respectively. The superscript (l + 1) on 𝛾c was dropped for brevity.

All forces acting on the system except the frictional contact, density and boundary

constraint forces are evaluated at time t(l) and denoted by 𝐟 ≡ 𝐟 (t(l),𝐪(l), 𝐯(l)). The term
1
h
𝛷i(𝐪(l)) achieves constraint stabilization by eliminating any penetration within one

time-step.

For large models with millions of contacts, no effective methods are available

for solving the numerical problem in Eqs. (8b)–(8g), which assumes the form of a

nonlinear complementarity problem (NCP). This observation motivated a third deci-

sion (D3), which was to recast the aforementioned numerical problem into a more

amenable one by a convexification of the NCP; i.e., by relaxing the complementarity

condition in Eq. (8f) [3] to

i ∈ (q(l), 𝛿) ∶ 0 ≤
1
h
𝛷i(𝐪(l)) + 𝐃T

i,n𝐯
(l+1) − 𝜇i

√
(𝐯T 𝐃i,u)2 + (𝐯T 𝐃i,w)2 ⟂ 𝛾

i
n ≥ 0 .

(9)

Owing to this relaxation, the resulting set of equations become a cone complemen-

tarity problem (CCP), see, for instance, [17]. Specifically, solving for 𝐯(l+1) from

Eq. (8b) and plugging its expression in Eq. (9) yields a mathematical program-

ming problem with complementarity constraints formulated exclusively in the set

of Lagrange multipliers 𝛾 [1]. To pose the CCP, the following notation is used: the

number of contacts in (𝐪, 𝛿) is nc; 𝐃 ≡ [𝐃1,… ,𝐃nc ] ∈ ℝ6nb×3nc is the generalized

contact transformation matrix; 𝐃i ≡ [𝐃i,n,𝐃i,v,𝐃i,w] ∈ ℝ6nb×3 is the contact trans-

formation matrix associated with contact i ∈ (q(l), 𝛿); 𝐫i ≡ 𝐛i + 𝐃T
i 𝐌

−1𝐟 ∈ ℝ3
is

the generalized contact velocity for contact i; 𝐛i ≡
[
1
h
𝛷i(𝐪(l)), 0, 0

]T
∈ ℝ3

is the

unilateral constraint stabilization term; and 𝐍 ≡ 𝐃T𝐌−1𝐃 ∈ ℝ3nc×3nc is the contact
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associated symmetric positive-semidefinite Schur complement matrix, which is typi-

cally very sparse. The new quantities introduced – nc, 𝐃, 𝐃i, 𝐫i, 𝐛i, and 𝐍—should be

further qualified by a superscript (l) to indicate that they are evaluated in the system

configuration corresponding to t(l). For brevity, the superscript was omitted. Then,

the CCP then assumes the form

Find: 𝛾
(l+1)
i , for i = 1,… , nc

such that 𝛶i ∋ 𝛾
(l+1)
i ⟂ −

(
𝐍𝛾 (l+1) + 𝐫

)
i ∈ 𝛶

◦
i , (10)

where 𝛶i = {
[
x, y, z

]T ∈ ℝ3|√y2 + z2 ≤ 𝜇ix} ,

and 𝛶
◦
i = {

[
x, y, z

]T ∈ ℝ3|x ≤ −𝜇i
√
y2 + z2} .

This CCP represents the first order optimality condition of a quadratic optimization

problem with conic constraints whose solution provides the set of normal and friction

forces associated with the set of contacts in (𝐪, 𝛿):

min f (𝛾) = 1
2
𝛾
T𝐍𝛾 + 𝐫T𝛾 (11)

subject to 𝛾i ∈ 𝛶i for i = 1, 2,… , nc .

The solution of the optimization problem in Eq. (11) is found using a Nesterov

method [14].

The overall approach is summarized as follows: an application that leads to a

solid-body dynamics, fluid dynamics, or fluid-solid interaction problem is posed as

a set of differential algebraic inclusion equations. These equations are discretized to

lead to a NCP via (D1) and (D2). The NCP is convexified based on (D3) to become a

CCP. The CCP is solved by considering an equivalent quadratic optimization prob-

lem with conic constraints, whose solution is the desired 𝛾 ∈ ℝ3nc . Equation (8b) is

then used to expeditiously compute the velocity 𝐯(l+1). The generalized coordinates

𝐪(l+1) are recovered using Eq. (8a) and the simulation is advanced to t(l+1).

4 Numerical Experiments

The solution framework described in Sect. 3 has been implemented in an freely-

available open source simulation engine called Chrono [13, 21, 27]. In this paper

we focus on a fording maneuver that is posed as a fluid-solid interaction problem. To

this end, we use a nine body HMMWV vehicle model that consists of a 2086.52 kg

chassis connected to four rigid lugged wheels via a double wishbone suspension.

For this four-wheel drive vehicle, a driver model was used to move in a straight line

while providing throttle and brake input to the vehicle to maintain a vehicle speed of

2 m/s during the entire fording maneuver.
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Fig. 2 Fording setup. No fluid shown

(a) Fording simulation, fluid is represented as a collection of 1 426 663 rigid
frictionless spheres. The simulation leads to problem as stated in Eq. (1).

(b) Fording scenario simulated with constraint fluids via Navier-Stokes and SPH.
The problem is posed as a set of differential algebraic inclusion equations,

see Eq. (8).

Fig. 3 A fording scenario, simulated via two representations of the fluid
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The goal of this numerical experiment was to simulate a river fording operation

where two different techniques would be compared. The first technique represents the

fluid as a very large number of rigid frictionless spheres, more precisely 1 426 663

of them, and the equations of motion are exclusively governed by the differential

algebraic inclusion problem of Eq. (1). The second technique represents the fluid

via the Navier-Stokes equations and uses a constraint fluid formulation as detailed

in Sect. 2, see Eq. (7). Using the results from these simulations we can understand

how well they match each other and assess the benefits and pitfalls associated with

each of them.

The fording setup, shown in Fig. 2 consists of two end platforms approximately

4.87 m (16 ft) long followed by a slope of length 5.18 m (17 ft) and a bottom slope of

length 4.57 m (15 ft). The distance from the end platform to the bottom was 2.43 m

(8 ft) and was filled with fluid such that half of the chassis would be under water dur-

ing the fording operation, see Fig. 3b. Each of the 1 426 663 SPH fluid particles has a

mass of 3.96 × 10−3 kg, a kernel radius of 0.032 m and a rest density of 1000 kg∕m3
.

The simulation is 12 s long and carried out with a time step of 0.001 s. The Barzi-

lai Borwein solver was used with 1000 iterations for the bilateral constraints and an

additional 50 iterations for the entire problem [9]. Simulations were performed using

40 parallel threads on a workstation that had two 10 physical core Intel(R) Xeon
®

CPU E5-2650 v3 @ 2.30 GHz processor with 128 GB of DDR4 2133 MHz memory.

Two simulation snapshots are shown in Fig. 3a, where the fluid is modeled as

a collection of rigid spheres, and Fig. 3b, where the fluid motion is captured via

Navier-Stokes and SPH. As reported in detail in [7, 12], over the entire fording oper-

ation the engine used approximately 278 530 J of energy to drive through the fluid

and 372 112 J to drive through the rigid spheres, a difference of 25%. Indeed, rigid

Fig. 4 Magnitude of the overall force impressed on the vehicle in a fording operation as it moves

through a fluid (blue) and a large collection of frictionless spheres that mimic a fluid (red)
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spheres are more difficult to move through even when frictionless as spheres inter-

lock when settled and more energy is required to make them flow. This difference in

flowability causes the increase in energy required to perform the fording operation.

Moreover, although not shown in these plots, the controller required more throttle

while attempting to maintain a 2 m/s speed through the rigid spheres when compared

to the fluid due to the larger forces exerted upon the chassis, see Fig. 4.

(a) Chrono simulation of vehicle operating on plastic material that is meant to
capture clay/silt-type soils. Performed using parallel computing via multiple

CPU cores and GPU computing.

(b) Chrono simulation of vehicle operating on granular/gravel-type material.
The motion of every particle in the terrain is monitored by leveraging

parallel computing on GPU cards.

Fig. 5 Two other simulations that draw on the same differential algebraic inclusion analytical

foundation, and same open-source Chrono simulation infrastructure
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5 Conclusions

We outlined a modeling approach that relies on differential algebraic inclusion prob-

lems to pose the equations of motion for complex systems in the presence of friction

and contact. This approach was used to demonstrate the dynamics of a vehicle per-

forming a fording operation when in one case the fluid was represented by means

of approximately 1.5 million frictionless spheres, and in the second case using the

Navier-Stokes equations of motion. Both cases lead to problems with bilateral and

unilateral constraints. In this context, insofar the “differential algebraic inclusion”

concept is concerned, the “differential” attribute of the approach is associated with

the momentum balance equations. The “algebraic” attribute is tied to the presence of

holonomic and nonholonomic kinematic constraints that relate the generalized posi-

tions, and potentially velocities, used to describe the state of the mechanical system.

Finally, the “inclusion” attribute goes back to the unilateral constraints and their con-

nection to complementarity conditions—they appear, for instance, in handling the

Coulomb friction, in non-penetration conditions, and in plasticity constitutive equa-

tions [26]. Although we have not touched upon the handling of plasticity, a Chrono
simulation that uses the same differential algebraic inclusion approach is shown in

Fig. 5a. For completeness, in Fig. 5b we provide a snapshot of a simulation in which

a vehicle operates on granular/gravel-type material. Looking ahead, work is under

way to implement solutions for the analysis of tracked vehicles operating in off-road

conditions [22].
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Large Deformation Modeling
of Soil-Machine Interaction in Clay

Chong Peng, Mozhen Zhou and Wei Wu

Abstract The evaluation of soil reaction force on tillage tool is important for design

and management optimization. The large deformation, dynamic nature and com-

plex soil-tool contact in the problem make it a challenge in numerical modeling.

The popular finite element method (FEM) has distorted mesh in large deformation,

and complex adaptive remeshing techniques need to be used in soil-tool interaction

simulation. On the other hand, numerical approaches based on computational fluid

mechanics (CFD) and discrete element method (DEM), although avoid mesh dis-

tortion, have difficulties in capturing the true mechanical properties of soils. In this

study, we develop a total Lagrangian SPH (TL-SPH) approach for simulating the

large deformation soil-machine interaction in clay. The TL-SPH is simple in for-

mulation and computationally efficient. The accuracy and stability of the method is

improved by employing an hourglass control technique. Soil-tool contact is modeled

using a node-to-segment (NTS) contact algorithm. Preliminary numerical studies are

carried out, it is demonstrated that the presented approach is capable of capturing

salient soil-tool interaction properties.

1 Introduction

The study of of soil-tool/machine interaction focus on soil failure and deformation

patterns and force prediction for design and management optimization.

Previously, the reaction forces are evaluated based on theoretical models with

assumed failure and deformation mode [1]. These models have difficulties when

complex geometries and loading conditions present. Furthermore, soils are modeled
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as rigid-perfectly-plastic media. Some important soil behaviors, such as

rate-dependency, plastic hardening/softening and hydro-mechanical coupling are not

considered. Numerical methods can deal with complex geometry and loading con-

ditions, as well as arbitrarily complex soil constitutive responses. However, the large

deformation, dynamic nature and complex soil-tool contact in soil-tool interaction

make it a challenge for numerical methods. The finite element method (FEM) (so

as other grid-based method) has distorted mesh in large deformation; thus, complex

adaptive remeshing techniques need to be adopted. On the other hand, numerical

approaches based on computational fluid mechanics (CFD), although avoiding mesh

distortion, have difficulties in capturing the true mechanical properties of soils [2].

Meshfree methods have gained popularity in the last two decades, and have advan-

tages in special fields like large deformation and crack propagation [3, 4]. Smoothed

particle hydrodynamics (SPH) is a well-established meshfree method mainly applied

in astrophysics and computational fluid mechanics. SPH has also been employed in

large deformation analysis and granular flow modeling [3]. However, the conven-

tional SPH has two deficiencies: tensile instability and low accuracy in stress com-

putation caused by rank-deficiency, which severely restrict its application in solid

mechanics. Several techniques were developed to mitigate the deficiencies. The arti-

ficial stress technique proposed by Gray et al. [5] is usually employed to alleviate

the tensile instability. However, the artificial stress inevitably introduces additional

dissipation which is unphysical. Later, it was revealed that the use of Eulerian kernel

function is the cause of the tensile instability, and the alternative total Lagrangian

SPH (TL-SPH) is completely free of tensile instability. However, the hourglass mode

caused by rank-deficiency is still problematic in the TL-SPH method, leading to

low accuracy and unphysical particle distribution. Researchers introduced additional

stress points to cure the rank-deficiency [6]. However, where to place the stress points

and how to move them seem ambiguous. Also, the employment of stress points intro-

duces additional computational cost. As a consequence, the stress points method

does not see wide application.

Recently, an hourglass control technique analogous to that used for reduced inte-

gration finite element was developed for TL-SPH [7]. It is demonstrated that this

hourglass control technique dramatically improves the accuracy and stability of SPH.

The TL-SPH thus becomes a reliable numerical method for large deformation analy-

sis in solid mechanics. In this paper, we present a TL-SPH method for the large defor-

mation soil-machine interaction in clay. As a preliminary study, the clay is modeled

using a rate-independent elastoplastic model with von-Mises yield criterion. A node-

to-segment (NTS) contact algorithm is employed to correctly simulate the soil-tool

contact. The stiffness-based hourglass control technique is used to stabilize the simu-

lations. A simple soil cutting problem is simulated to validate the presented method.
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2 Total Lagrangian SPH for Clay

Conventionally, SPH employs an updated Lagrangian strategy. The node connectiv-

ity used for approximation is based on the current configuration, and it constantly

changes during the computation. The kernel functions are also evaluated based on

the current configuration, giving the name Eulerian kernel. It is found that the ten-

sile instability in SPH is caused by the use of Eulerian kernel. Consequently, total

Lagrangian formulations were developed, which define the support domain using the

undeformed reference configuration. In TL-SPH, the particles in a support domain

is fixed so the domain deforms with the material. This TL-SPH does not have tensile

instability; thus, it is more suitable for solid mechanics where material strength is

encountered.

2.1 Total Lagrangian Formulation

Let X be the coordinates of the initial undeformed reference configuration. The kine-

matics of the deformed medium are as follows. A mapping between the current con-

figuration and X is used to describe the motion at time t

x = 𝜑(X, t) (1)

The displacement u is given by

u = x − X (2)

The deformation of the medium is measured by the deformation gradient F

F = dx
dX

= du
dX

+ I (3)

where I is the identity matrix. The rate of deformation gradient Ḟ is given by

Ḟ = dv
dX

(4)

where v is the velocity defined as dx∕dt. Note that Ḟ is evaluated based on the refer-

ence configuration. The instantaneous velocity gradient l in the current configuration

is written as

l = dv
dx

= dv
dX

dX
dx

= ḞF−1
(5)

Consequently, the rate of deformation tensor d and spin tensor w are obtained by

d = (l + lT)∕2 and w = (l − lT)∕2.
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The conservation of mass and momentum is based on the reference configuration

𝜌J = 𝜌0 (6)

dv
dt

= 1
𝜌0

∇0 ⋅ P +
f
𝜌0

(7)

where J is the determinant of the deformation gradient F, 𝜌 is the density, and P
is the first Piola Kirchhoff stress tensor. f includes all external forces such as body

force, contact force and surface traction. The subscript 0 indicates that a quantity is

evaluated in the reference configuration.

2.2 Kernel Corrected Total Lagrangian SPH Approximation

The Lagrangian kernel is based on the reference coordinates X. At the beginning

of simulations, the nodal connectivity is determined and unchanged later on, unless

the reference configuration X is updated in extremely large distortion. Therefore,

the nodal connectivity is only required to calculate once, which saves much com-

putational cost. SPH approximation of a scalar function f and its derivatives can be

written as

f (Xi) =
n∑

j=1
f (Xj)Wi(Xij)V0

j (8)

∇0f (Xi) =
n∑

j=1
f (Xj)∇0Wi(Xij)V0

j (9)

where n is the number of particles in the influence domain of Xi. Wi(Xij) is the kernel

function of particle Xi dependent on the distance between particle Xi and particle Xj,

with Xij =∥ Xj − Xi ∥.

The conventional SPH approximation lacks zeroth and first order consistency. The

kernel gradient correction is used to restore the consistency. At the beginning of each

step, a shape matrix is computed as

Li =
n∑

j=1
(Xj − Xi)⊗ ∇0Wi(Xij)V0

j (10)

The kernel gradient ∇Wi(Xij) is replaced by a corrected gradient ∇̃Wi(Xij) = L−1
i ∇Wi

(Xij). Together with the symmetric discretization of the momentum equation, the

zeroth and first order consistency is restored.
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As total Lagrangian formulation is used, the mass conservation is automatically

satisfied. For the momentum equation, the nodal forces caused by stress are given by

the following equation in TL-SPH [7]

f i =
n∑

j=1
(PiL−1

i + PjL−1
j )∇0Wi(Xij)V0

i V
0
j (11)

In the TL-SPH, boundary conditions can be enforced as either velocity constraints or

external nodal forces. Therefore, if a constitutive model is provided to obtain stress

tensor P, the large deformation problem can be solved using explicit integration.

2.3 Constitutive Law

Large plastic deformation occurs during soil-tool interaction. The implementation

of plastic models in large deformation analysis is non-trivial. In finite strain theory,

the treatment of plasticity is based on multiplicative decomposition of deformation

gradient. Another popular but less theoretically solid approach is the hypoelastic-

plastic method making use of objective stress rate in the current configuration. It is

found that the hypoelastic-plastic approach is accurate enough if: (1) the elastic strain

is small compared to plastic strain, (2) the time step is sufficiently small. In this paper,

a hypoelastic-plastic approach is employed due to its convenience in implementation.

The rate of deformation tensor has the following additive form

d = de + dp (12)

where de and dp are the elastic and plastic parts of the rate of deformation tensor.

The constitutive equation is written as

Lv(𝝉) = D ∶ (d − dp) (13)

where Lv denotes the Lie objective stress rate defined as Lv(𝝉) = �̇� − l ⋅ 𝝉 − 𝝉 ⋅ lT,

𝝉 = J𝝈 is the Kirchhoff stress. D is the fourth-order elastic tensor.

The von-Mises yield criterion is employed

F(𝝉) =
√
2J2 −

√
2∕3𝜎Y = 0 (14)

where J2 is the second invariant of the Kirchhoff stress tensor, 𝜎Y is the yield stress

of clay.

At each time step, the velocity gradient l and rate of deformation tensor d can be

obtained from F and Ḟ through Eq. (4). The Kirchhoff stress tensor is calculated by

time integration of the rate of Kirchhoff stress. The first Piola-Kirchhoff stress P is

finally obtained by P = 𝝉F−T
.
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2.4 Hourglass Control for Total Lagrangian SPH

The TL-SPH method outlined above has rank-deficiency which leads to hourglass

mode distribution of particles. The deformation gradient of a particle in SPH is the

average of individual particle pair contribution. This average process may lead to

information loss. If more than one particle configurations result in the same defor-

mation gradient hence the same potential energy, the solution may oscillates between

these configurations, leading to the so-called hourglass mode.

An hourglass control algorithm was proposed recently by Ganzenmüller [7]. The

deformation gradient operator is a linear operator, which means that the displace-

ment in the support domain is a linear field. Nodal displacements incompatible with

the linear field described by the average deformation gradient are identified as hour-

glass displacement. For a particle pair Xi and Xj in a domain centered at Xi with

deformation gradient Fi, the exact linear separation is

< xij >i = FiXij (15)

However, the actual separation xij is not identical to < xij >i
and the error is eiij =

< xij >i −xij. For symmetry we apply the same operation to particle Xj. Conse-

quently, the error vector is obtained as

eij =
1
2
(eiij + ejij) =

1
2
(Fi + Fj)Xij − xij (16)

To suppress the hourglass mode the error vector should be minimized. Therefore,

a force in line with Xij is used to control the hourglass mode

f̂HGij = −1
2
𝛼E

eij ⋅ xij
X2
ij

xij
x2ij

(17)

where E is the Young’s modulus of the material, and 𝛼 is a constant to control the

magnitude of hourglass control force. Note that f̂HGij is the force per unit volume,

and it is only the force between the particle pair Xij. In the SPH context, the total

hourglass control force on particle i is the SPH average of all the contributions from

the neighboring particles

fHGi = V0
i

n∑

j=1
f̂HGij Wi(Xij)V0

j = −1
2

n∑

j=1
𝛼E

eij ⋅ xij
X2
ij

xij
x2ij

Wi(Xij)V0
i V

0
j (18)

The adopted hourglass control algorithm works perfectly for elastic problems.

But the stiffness-based hourglass control forces prohibit the development of plastic

deformations, which are intrinsically nonlinear. In this paper, if a particle is identi-

fied undergoing plastic deformation, the constant 𝛼 in the hourglass control force is

divided by a factor of 100, to allow the normal plastic deforming.
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Fig. 1 The contact between

rigid tool surface and SPH

soil particle

3 Node-to-Segment Contact for TL-SPH

The contact between soil and tool is modeled using a node-to-segment algorithm.

The tool is discretized with line segments with length of Δp, the initial average spac-

ing of SPH particles, as shown in Fig. 1. The commonly used penalty method is used

to compute the contact force

f ni = (1 − 𝜒)
2mi

(Δt)2
(d0 − d)n (19)

where n is the unit normal vector of the master contact face. The penalty coefficient

2mi∕(Δt)2 is applied to make sure that the penetration d0 − d become zero in the time

duration Δt, where d0 = Δp∕2 is the contact threshold between deformable soil and

rigid tool face and d is the distance between the master surface and the contact slave

node. 𝜒 defines the allowed residual penetration, which usually ranges from 0.9 to

0.99. In this work, the contact is modeled as frictionless. Therefore, the contact force

in the tangential direction is zero.

A important aspect in contact analysis is the search for potential contact and deter-

mination of the slave node-master surface pair. For a soil particle, we first search

for the closest surface node C. Then the next and previous surface nodes F and B
are determined. Naturally, the particle node is the slave node, and the two surfaces

⃖⃖⃖⃖⃗BC and ⃖⃖⃖⃖⃗CF are the potential master surfaces. However, the determination of mas-

ter surface in NTS algorithm is complicated by many special cases. The procedure

described in [8] is used in this work to decide the master surface. Once the master

surface is determined, the distance d can be obtained by

d = (xS − xC) ⋅ n (20)

4 Numerical Example

A case of rigid tool cutting into a clay is modeled, as shown in Fig. 2. The width

and angle of the blade is 0.12 m and 45
◦
, respectively. The material parameter for

the clay is: Young’s modulus E = 1.0 MPa, Poisson’s ratio 𝜈 = 0.25 and yield stress

𝜎Y = 5.0 kPa. As a preliminary study, the rate-dependent and frictional effects are not

considered. The blade moves horizontally, accelerating linearly to vx = −4 cm/s in
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Fig. 2 The geometry and boundary conditions of the soil cutting problem

Fig. 3 The horizontal and

vertical reaction force on the

tool surface

2 s, ensuring a quasi-static loading condition. After reaching−0.04 cm/s, the velocity

is then kept constant. The spatial resolution of the numerical discretization is Δp =
0.02 m. Gravitation is not considered. The coefficient 𝛼 for the hourglass control is

taken as 50.

The horizontal and vertical reaction forces are shown in Fig. 3. As the sharp

tool cutting into the soil body, the reaction forces increase gradually, and eventu-

ally become stable. The stable horizontal and vertical reaction forces are approxi-

mately 595 and 550 N, respectively. The deformation pattern of the cutting is given

in Fig. 4, together with the displacement and equivalent plastic strain. It is found that

the deformation of the soil-tool cutting is reasonably modeled.



www.manaraa.com

Large Deformation Modeling of Soil-Machine Interaction in Clay 257

Fig. 4 The shape of the soil after cutting: a displacement; b plastic strain

5 Conclusion

Large deformation modeling of soil-tool interaction is performed using a total

Lagrangian smoothed particle hydrodynamics. The TL-SPH method is free of tensile

instability. Its accuracy and robustness is further improved using a stiffness-based

hourglass control algorithm. With a hypoelastic-plastic approach, any constitutive

model for infinitesimal strain can be used in large deformation analysis. The node-

to-segment contact formulation is employed to model the soil-tool contact. The sim-

ulation of a blade cutting into a clay demonstrates that the method reasonably cap-

tures the forces and the deformation pattern, which are the two main concerns in

soil-machine interactions. The preliminary results show that the presented method

is promising and can be applied to model various soil-tool interaction problems.
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Tracing the Salt Crystallization Front
in Limestone Using the DRMS

Sevasti Modestou and Ioannis Ioannou

Abstract Salt crystallization is widely recognised as one of the most damaging
factors affecting stone monuments and buildings. The conservation of stone her-
itage suffering from weathering due to the presence of salts can be very expensive
and laborious. Furthermore, the assessment of salt-laden buildings alone is often
challenging and costly in its own right. This paper focuses on the use of a
micro-destructive technique, the Drilling Resistance Measurement System
(DRMS), to trace the salt crystallization front in natural building stone subjected to
continuous partial immersion in a salt solution. The results provide strong evidence
of the efficacy of micro-drilling to “map” the crystallization front. This is facilitated
by increased resistances recorded during drilling in areas where pore clogging due
to salt crystallization occurs. The experimental results are important for future
research aiming to validate models relating rising damp to salt crystallization. The
combination of DRMS and continuous partial immersion in salt solution laboratory
tests may also be used to investigate the effect of water repellents and
coatings/finishes on salt transport and crystallization in porous materials. Last but
not least, the potential of the portable DRMS to trace the salt crystallization front in
limestone may be used to detect cryptoflorescence in situ, on stone monuments,
before it becomes damaging.
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1 Introduction

The crystallization of soluble salts within the pores of building materials, such as
stone, is widely accepted as an important cause of decay [1, 3, 5, 10, 12, 20].
Conservation and repair of stone structures and monuments suffering from salt
crystallization can be a costly and time-consuming practice. At the same time, the
assessment of salt-laden structures may be a challenging task itself. Thus, tools and
methods that could be used in preventive conservation of monuments to detect salt
crystallization within the pores of stone before it becomes damaging, could provide
an early warning system to conservators and may be of utmost importance in the
protection of such structures.

In previous work [16], we have successfully used the micro-destructive Drilling
Resistance Measurement System (DRMS) to detect the salt front in a natural
limestone, both in the laboratory and in situ. Here, we focus on the use of the
DRMS to trace salt crystallization in a building limestone subjected to continuous
partial immersion in a salt solution in the laboratory.

2 Materials and Methodology

A limestone sample measuring 5 × 5 × 30 cm was subjected to continuous
partial immersion in the laboratory using a 1.6 M magnesium sulphate salt solution.
The stone under investigation was quarried in the village of Agios Theodoros in
Cyprus. It is a packstone or poorly washed biosparite with rather complex miner-
alogy, including a large proportion of siliciclastic grains with a significant fraction
of basaltic lithoclasts. The intergrain cement is microsparry calcite and micrite [15].

The stone sample was positioned upright, with the long axis vertical, on two thin
supports inside a glass container containing the salt solution and a layer of diabase
aggregates (Fig. 1). Paraffin wax was used to provide a barrier to evaporation from
the free solution surface. The test specimen was left partially immersed in the salt
solution for six months. During this period, the salt solution was replenished as
necessary using a rubber tube inserted in the set-up.

Following the continuous partial immersion test, the stone sample was drilled
along its entire length using the DRMS in order to map the location of the salt
crystallization front. The DRMS is a cordless and portable micro-destructive tool
that was primarily developed for laboratory and in situ studies in the field of cultural
heritage (e.g. [4, 8, 23]). More recently, the system has also been used to charac-
terize various limestones from across Europe [22]. During drilling tests, the pen-
etration rate and rotational speed of the drill bit are kept constant, while the force
required to drill is continuously recorded in relation to the drilling depth. This force
is sensitive to pore clogging and can thus be used to map the location of the salt
front in salt-laden stones fairly accurately [16].
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In the present research, the stone sample was drilled to a depth of 4 cm. The
diameter of the diamond drill bit used was 5 mm, whilst the operating conditions
were 600 rpm for the rotational speed and 10 mm/min for the penetration rate.

3 Results and Discussion

Photographic evidence of the results of the continuous partial immersion test is
presented in Fig. 2. Figure 3 presents the DRMS mapping patterns for the first 2.5–
3.0 cm of drilling for each successful test.

From the results, it appears that the lowest section of the test specimen, below
the red dotted line (Fig. 2), remains damp throughout the test. This is attributed to
the fact that the rate of salt solution rise in that area is faster, compared to the rate of
evaporation. The section immediately above that area and below the upper limit of
capillary rise produces harmless efflorescence, since evaporation and salt solution
supply are approximately equal, thus allowing the drying/crystallization front to
locate itself on the surface of the material. The uppermost section is where
cryptoflorescence persists. Here, evaporation is greater than the rate of supply of
salt solution by capillarity; thus the evaporative surface or drying front moves into
the material, preventing salts from being transported to the surface [19]. In that area,
close to the centre of the test specimen, cracks appear (see Figs. 2 and 3) as a result
of crystallization pressures exceeding the tensile strength of the sample under
investigation.

1

2

3

4

5

Fig. 1 Continuous partial
immersion test set-up (1 Stone
specimen, 2 Glass container,
3 Rubber tube to facilitate
solution replenishment,
4 Paraffin wax layer, 5 Salt
solution and diabase
aggregates)
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The DRMS patterns (Fig. 3) vividly show increased resistances (peaks) at
varying positions along the central vertical axis of the sample. The positions of the
peaks in the DRMS profiles allow the prediction of the position of the crystal-
lization front and consequently the generation of a theoretical crystallization profile
(see Fig. 3, right). The parabolic shape of the predicted crystallization front is in
line with idealized diagrams produced by Scherer [19] and Ruiz-Agudo et al. [18]
for salt crystallization incidents occurring due to the upward movement of moisture
in unsaturated porous materials. This shape is attributed to the fact that evaporation
is more efficient near the surface of a material, rather than within its body. As a
result, fluid flow deeper within the test specimen is more efficient than near its
surface, allowing the salt solution to move further up [14].

The parabolic shape of the predicted crystallization front also confirms the
macroscopic analysis of the results shown in Fig. 2. Whilst there is little (if any)
resistance to drilling in the visibly damp region of the sample, as well as in the
region with efflorescence (see DRMS mapping patterns for holes nr. 9–12, Fig. 3),
above these regions, where cracking due to the action of cryptoflorescence appears,
there is increased resistance to drilling (see DRMS mapping patterns for holes nr.
3–8, Fig. 3). The peaks in this upper region gradually move towards the centre of

Fig. 2 Continuous partial immersion test results at various stages (left 1 day; middle 3 months;
right 6 months). Dotted red line on 1-day sample emphasizes limit of continuously damp area.
Arrows indicate crack positions
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the test specimen, likely due to pore clogging and cryptoflorescence occurring
progressively further inside the body of the material.

Figure 4 confirms that the DRMS patterns shown in in Fig. 3 provide a reliable
estimate of the salt crystallization front. In this Fig., which shows a horizontal
section through the material at the position of drill hole nr. 3, the crystallization
front can clearly be observed (white residue). The DRMS pattern follows this front
almost perfectly; this is reflected in the increased drilling resistances observed
across the white residue area (Fig. 4, right).

It is interesting to note that, at least for the particular sample under investigation
here, moisture does not seem to affect the overall resistance to drilling. Comparing
the DRMS patterns for holes nr. 1 and 2, where the material appears dry, to the
pattern for hole nr. 12, where the material is clearly quite moist, there does not
appear to be any significant difference. The average drilling resistances at these drill
positions were 9.1 N (drill hole nr. 1), 8.5 N (drill hole nr. 2) and 10.7 N (drill hole
nr. 12); these are more or less equal, bearing in mind the sensitivity of the drilling
methodology to the mineralogy and microstructure of a test specimen. This

Fig. 3 DRMS mapping
patterns (left sample face
subjected to DRMS tests;
middle side profile of sample;
right corresponding DRMS
patterns overlaid on sample
profile with predicted
crystallization front marked in
red)
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observation is important with respect to the application of the DRMS in situ, where
it is very difficult to control the moisture content of the material.

A Note on the Practical Significance of the Results

The phenomenon of upward movement of moisture (also referred to as wicking)
into materials in contact with a water reservoir, such as saturated soil, is known as
rising damp and has long been noted to be related to salt weathering problems in
buildings (e.g. [6]). Many scientists have approximated the rising damp weathering
situation in the laboratory using continuous partial immersion tests (e.g. [2, 13, 17,
19, 21]). One of the advantages of the partial immersion test, particularly when the
environmental conditions are controlled or when many tests are run in parallel, is
that the results between different stone varieties and/or salt solution combinations
can readily be compared [7]. Furthermore, specific elements of salt crystallization,
such as the location/distribution of salt crystals, can be examined at the same time
as the durability of a specific stone, provided a non- or micro-destructive mapping
methodology can be applied. This renders the results of the present research par-
ticularly useful, since they may be used in future work aiming to validate models
relating rising damp to salt crystallization. Combining results from continuous
partial immersion tests and DRMS salt mapping, with physical models of rising
damp (see, for example, [11]), provides a means to estimate the effect of salts on
water transport within masonry walls, since salts can affect parameters such as the
viscosity of the transporting liquid, evaporation rate, and permeability.

Moreover, the combination of DRMS and continuous partial immersion in salt
solution laboratory tests can be adapted to investigate the effect of water repellents
and coatings/finishes on salt transport and crystallization in porous materials. Such
treatments can inhibit evaporation, fully or partially, and thus may induce an
increase in the height of capillary rise of moisture and subsequently to the position
of the salt crystallization front (e.g. [9, 24]).
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Fig. 4 Left Horizontal section through the test specimen at the position of drill hole nr. 3. Right
DRMS pattern from drill hole nr. 3 superimposed on photograph at location of drill hole
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4 Conclusions

This research provides strong evidence of the efficacy of micro-drilling to “map”
the crystallization front in natural building stone subjected to continuous partial
immersion in a salt solution. This is facilitated due to the increased resistances
recorded during drilling in areas where pore clogging due to salt crystallization had
occurred. The aforementioned potential of the DRMS may be used to detect
cryptoflorescence in situ, on stone monuments, before it becomes damaging.

The experimental results may also be utilized in future research work aiming to
validate models relating rising damp to salt crystallization. The combination of
DRMS and continuous partial immersion in salt solution laboratory tests may
further be used to investigate the effect of water repellents and coatings/finishes on
salt transport and crystallization in porous materials.
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Bearing Capacity in Sand Under Eccentric
and Inclined Loading Using a Bounding
Surface Plasticity Model

Dimitrios Loukidis and Nektaria Ygeionomaki

Abstract The bearing capacity of strip footings on sand under inclined or eccentric
loading is investigated using finite element analysis. The sand behavior is simulated
using a bounding surface plasticity constitutive model based on critical state theory
that accounts for strain softening, pre-failure non-linearity and material anisotropy.
The parametric study focuses on the rate of decrease of the bearing capacity with
increasing load inclination or load eccentricity for various values of sand relative
density. The numerical predictions are compared with experimental data from
centrifuge tests, as well as predictions from existing design equations.

Keywords Sand ⋅ Bearing capacity ⋅ Finite elements

1 Introduction

The bearing capacity QbL of shallow foundations is traditionally calculated using
the bearing capacity equation. For the specific case of a strip footing resting on the
free surface of an uncemented (cohesionless) sand deposit and loaded with eccentric
and inclined loading, the bearing capacity equation reduces to the following:

QbL =
1
2
γB′2Nγiγ =

1
2
γB2Nγ, eq ð1Þ

where γ is the soil unit weight and Nγ is the bearing capacity factor. The factor iγ
introduces the effect of load inclination and B′ is the effective width, which
incorporates the effect of load eccentricity. According to Meyerhof [8], the effective
footing width is calculated as
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B′ =B− 2e ð2Þ

where e is the load eccentricity (i.e. the distance of the point of application of the
load from the footing central axis) and B is the actual footing width. The iγ is
commonly calculated using the Vesic [9] formula:

iγ = ð1− tan αÞ3 ð3Þ

where α is the load inclination angle measured from the vertical axis. Both Eqs. (2)
and (3) have been adopted by Eurocode 7. The Nγ,eq (= Nγiγ(1 − 2e/B)2) appearing
in Eq. (1) is an equivalent form of the bearing capacity factor that includes the
effects of load inclination and eccentricity.

The current state of practice (Eq. 1) for the estimation of the bearing capacity of
shallow foundations relies on the assumption that the soil behaves as an
elastic-perfectly plastic Mohr-Coulomb material with a constant friction angle ϕ.
However, the ϕ in reality is a function of many variables, such the mean effective
stress, the magnitude of shear straining (strain softening), and the direction of
loading relative to the soil fabric (anisotropy). All these change both spatially and
temporally inside the bearing capacity failure mechanism and proper analysis of the
problem requires consideration of advanced constitutive models. Loukidis and
Salgado [7] investigated the bearing capacity of centrally and vertically loaded
footings on sand, i.e. the Nγ factor, using finite element analysis combined with
advanced constitutive modeling. The present study extends that work to the case of
strip footings loaded by eccentric or inclined loads.

2 Numerical Methodology

The finite element (FE) simulations are performed using the code SNAC of Abbo
and Sloan [1]. The FE mesh consists of 15-noded plane-strain triangular elements.
A typical mesh and boundary conditions are shown in Fig. 1. The mechanical
behavior of the sand is a simulated using a bounding surface plasticity constitutive
model that is based on critical state theory [3]. The model captures realistically the
pre-failure non-linearity and contractiveness, as well as the post-failure softening to
critical state, while taking into account the effects of mean effective stress and
fabric-related anisotropy on the sand dilatancy. FE analyses are performed for sets
of constitutive model parameter values for two different sands [5], Toyoura sand
(subangular to angular grains with mean diameter 0.2 mm) and Ottawa C778 sand
(rounded to subrounded grains with mean diameter 0.4 mm).

The footing is modeled as a very stiff weightless elastic material, so that it moves
practically as a rigid body. No interface elements are placed between footing and
soil (perfectly rough footing). The unit weight γ of the sand is set equal to 20 kN/m3

in all analyses. The choice of the γ value is practically immaterial since the problem
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results can be normalized with respect to the product γB′. Loading is applied in the
form of a prescribed incremental displacement at a node lying at the footing-soil
interface and, thus, the footing force results from the analyses as a reaction force
(Fig. 1). For a footing loaded by an eccentric vertical force (e > 0, α = 0), the
prescribed displacement is vertical and applied at a distance e from the footing
center. For a footing loaded by an inclined central load (e = 0, α > 0), the dis-
placement is applied at the footing center with a certain inclination δ with respect to
the vertical axis. It should be noted that the inclination angle α of the resulting
reaction load turns to be different (smaller) than δ and varies during the course of a
simulation. Analyses were performed for B ranging from 1 to 3 m, relative density
DR from 45 to 90%, eccentricity ratio e/B from 0 to ¼, and δ from 0° to 79°
(yielding values of load inclination α at limit state in the 0°–34° range). The
distance between adjacent nodes inside the region where the failure mechanism
develops ranges from 37 to 450 times the mean particle diameter of the sand.
Hence, the shear band thickness in the simulations is roughly between 2.5 and 30
times the thickness of the shear bands that would develop in reality.

3 Simulation Results

Figure 2 shows examples of vertical load versus vertical prescribed displacement
for various values of initial relative density DR and for two loading cases: 1 m wide
footing loaded by an eccentric vertical force (Fig. 2a) and by a central inclined
force (Fig. 2b). It can be observed that for dense (DR = 75, 90%) and medium

sand

strip footing
e

prescribed displacement

resulting footing force

fixed in the 
horizontal direction

fixed in the 
horizontal directionfixed in both directions

Fig. 1 Typical finite element mesh and boundary conditions
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dense sand (DR = 60%), the load-displacement curve reaches a well defined peak
(failure) load (i.e. QbL), while for loose sand (DR = 45%) the response is much
more ductile. Moreover, the curves seem to approach the same post-peak ultimate
(residual) capacity (Fig. 2a) regardless of the value of initial DR. This observation is
consistent with critical state theory, according to which the operative soil friction
angle at very large shear strains attains its minimum value, which is independent of
the soil density and mean effective stress. The prescribed displacement vector
inclination δ is 79o in all simulations of Fig. 2b. The load inclination α values
reported in Fig. 2b (ranging from 26° to 33.5°) correspond to the peak load state.

Figure 3 shows typical examples of the plastic failure mechanism developing
under the strip footings, as depicted by contour plots of the plastic maximum shear
strain increment Δγmax,pl (= Δε1,pl − Δε3,pl). In the eccentrically loaded footing
case (Fig. 3a), the failure mechanism consist of two distinct parts. On the right hand
side, we have a “scoop” that the footing sits on and rotates counterclockwise, while
a comparatively smaller in size combination of a “fan” zone and passive wedge
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Fig. 3 Examples of plastic failure mechanism: a eccentric loading, b inclined loading
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develops on the opposite side. In the case of inclined loading, the failure mechanism
is one-sided and consists of an active (rigid) wedge under the footing, a narrow fan
zone and a comparatively small passive wedge. The geometries of the mechanisms
of Fig. 3 resemble closely those observed in sandbox (1 g) model experiments by
Jumikis [4], as well as in FE analyses in which the soil was modeled as a
Mohr-Coulomb elastic-perfectly plastic material [6].

The equivalent bearing capacity factor Nγ,eq increases with increasing DR, for
both centrally and eccentrically loaded footings, while it decreases with increasing
B (Fig. 4). The latter is due to the reduction of the operative friction angle with
increasing mean effective stress inside the failure mechanism. Nevertheless, the
relative reduction of QbL with increasing e/B appears to be independent of DR and
B (Fig. 5). On the other hand, in the case of inclined loading, the rate of relative
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reduction of QbL with α appears to be smaller for dense sand than for loose sand
(Fig. 6). Aiban and Znidarcic [2] performed centrifuge tests of eccentrically or
obliquely loaded strip footing (B = 1.14 m) on dense sand. The FE results are in
general agreement with the centrifuge data (Figs. 5 and 6). Finally, both FEA and
experimental data suggest that the Meyerhof [8] effective width approach (Eq. 2)
and the Vesic [9] iγ factor may be slightly on the conservative side (Figs. 5 and 6).

4 Conclusions

Finite element analyses were performed to investigate the effects of load inclination
angle α and eccentricity e on the bearing capacity QbL of strip footings on sand,
with the soil modeled using bounding surface plasticity. According to the FE
results, the rate of decrease of QbL with e is independent of footing size and sand
relative density DR, while there may be a small dependence of the rate of QbL

decrease with α on DR. The FE results are in general agreement with centrifuge test
data and equations used in current foundation engineering practice.
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An X-FEM Algorithm for Modeling
of Multi-zone Hydraulic Fracturing
in Saturated Porous Media

M. Vahab and N. Khalili

Abstract In this paper, a fully coupled hydro-mechanical model is presented for
the study of multi-zone hydraulic fracturing within saturated porous media. The
well-known ðu− pÞ formulation is employed in order to simulate the saturated
porous domain. An X-FEM Penalty algorithm is adopted to prevent the overlap of
the fracture edges. Meanwhile, the large time increment method (LATIN) is utilized
to remove the leak-off flow in the case of crack closure. Multiple crack growth
pattern is determined by means of energy based stress functions for cohesive
fractures. A computational algorithm is proposed for distribution of the fracturing
fluid flow across existing discontinuities. Finally, several examples are provided to
demonstrate the robustness of the proposed formulation.

Keywords Saturated porous media ⋅ (u – p) formulation ⋅ Multizone hydraulic
fracturing ⋅ X-FEM

1 Introduction

Hydraulic fracturing is a well-known technique in which well bores are stimulated
by injection of a highly pressurized liquid to induce permeable cracks. Recent
advances have made multizone multistage hydraulic fracturing a common practice
[1]. General issues in this regard emanate from: (i) the extent of the propagation of
competing fractures, (ii) coalescence of the initiated fractures, (iii) uncontrolled
fracture growth towards shallower or deeper layers, and (iv) unequal distribution of
fracturing fluid at different strata [2] (see Fig. 1).
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The growth and interaction of cracks has remained a challenging problem due to
the diverse kinematic and constitutive complexities. A key simplification adopted in
the literature is the application of the isolated crack growth using either the max-
imum circumferential tensile stress (see Zhang and Ghassemi [3]) or maximum
energy release rate criterion to multiple cracks (see Ooi and Yang [4]; Dong and de
Pater [5]). However, it is well-established that the real evolution pattern of multiple
competitive cracks can only be recognized by means of stability analysis (Budyn
et al. [6]). Li and Ghosh [7, 8] developed an innovative technique for multiple
cohesive crack growth in brittle materials based on multi-resolution stress functions.
Accordingly, the precise crack growth increment and direction were determined
through the application of a cohesive fracture energy based criterion so that the
fracture energy is maximized.

An innovative numerical framework for the simulation of propagating cracks has
been the X-FEM which was first used for the implementation of stationary fractures
in saturated porous media by de Borst et al. [9] and Réthoré et al. [10]. Khoei et al.
[11] presented a model for hydro-mechanical fracture growth in saturated porous
media, which was extended to multiphase porous media by Mohammadnejad and
Khoei [12] and Salimzadeh and Khalili [13]. Taleghani [1], and Wang and Tale-
ghani [2] developed an X-FEM model for mode I multizone multistage hydraulic
fracturing. More contributions on the simulation of hydro-fractures interacting with
natural discontinuities can be found in Khoei et al. [14, 15], Olsen and Taleghani
[16], and Salimzadeh and Khalili [17].

In this paper, a fully coupled hydro-mechanical model is presented for the study
of multizone hydraulic fracturing in saturated deformable porous media. The
hydro-fracture inflow is modeled based on the Darcy law, where the fracture per-
meability is calculated via the well-known cubic law. Multiple cohesive crack
growth is handled by taking advantages from the cohesive potential functions
introduced by Li and Ghosh [7, 8]. Using the X-FEM, the strong discontinuity in
the displacement field due to fracture opening as well as the weak discontinuity
within the pressure field due to leakage is incorporated. Finally, through several
numerical simulations the robustness and versatility of the developed framework
are demonstrated.

(i) Simulatenous (iii) Diverted (iv) Converging(ii) Asynchronous

Fig. 1 Possible scenarios encountered in multizone hydraulic fracturing treatments
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2 Governing Equations of Fractured Porous Media

The mixture theory which is based on the Biot theory [18] is employed in order to
describe the mechanical behaviour of the saturated porous media. The motion of the
solid-fluid mixture and the relative motion of the pore fluid respective to the
mixture are denoted by uðx, tÞ and wðx, tÞ, respectively. The momentum balance
equation of the total mixture is written as

∇ ⋅ σ + ρ b= 0, ð1Þ

where b is the body force vector. The linear momentum balance equation for the
pore fluid known as the generalized Darcy relation is represented as

−∇p−R+ ρfb= 0, ð2Þ

where R denotes the viscous drag force defined by using the Darcy seepage law as,
kf is the intrinsic permeability matrix of the porous medium, and μf is the fluid
dynamic viscosity. The generalized Darcy law can be rewritten as

ẇ=
kf
μf

ð−∇p+ ρfbÞ. ð3Þ

The continuity equation of the pore fluid is in turn expressed as

∇ ⋅ ẇ+ α∇ ⋅ u̇+
1
Q
p ̇= 0, ð4Þ

in which Q is the compressibility coefficient. Substituting Eq. (2) into Eq. (4) it
follows that

∇.
kf
μf

−∇p+ ρf b
� �" #

+ α∇. u̇+
1
Q
p ̇=0. ð5Þ

Equations (1) and (5) form the governing equations of the saturated porous media
under quasi-static conditions. Consider a two dimensional domain Ω bounded by
external boundary Γ as depicted in Fig. 2, which contains internal discontinuities
Γd =⋃NOD

i=1 Γ
i
d (i = 1: NOD) with NOD denoting the number of discontinuities. The

boundary conditions on the internal discontinuity Γd is defined as

σ ⋅nΓd = tcont + tcohs − p nΓd

½½w�� ⋅nΓd = qd
on Γd, ð6Þ

where tcont is contact traction, tcohs is cohesive stress, p is fluid pressure, and q ̄d is
the leak-off flow.
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2.1 Model for Hydro-Fracture Inflow

The hydro-fracture inflow is modeled by applying the mass balance Eq. (4) within
the discontinuity, where the Biot parameter α is omitted, and the compressibility
coefficient Q is simplified to Kf since the fracture porosity n is equal to unity. It
follows that,

∇ ⋅ ẇ+∇ ⋅ u̇+
1
Kf

p ̇=0. ð7Þ

The generalized Darcy law given by Eq. (3) is adapted for description of the
flow velocity within the fracture as

ẇ=
kfd
μf

ð−∇p+ ρfbÞ. ð8Þ

The fracture intrinsic permeability is obtained through the assumption of a
Newtonian viscous laminar flow which is given by the well-known cubic law as
kfd =w2 ̸12κ (see Zimmerman and Bodvarsson [19]), where w=2h is the fracture
opening, and κ is a modification coefficient introduced by Witherspoon et al. [20] in
range of 1.04–1.65.

2.2 Model for Contact Along Discontinuities

The contact constrains are imposed on the solid phase in order to avoid the pen-
etration of contacting surfaces along the discontinuities. The contact constrain is
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introduced along the faces of the discontinuities using the first Kuhn-Tucker
inequality as (Hirmand et al. [21])

gN ≥ 0, tcontN ≤ 0, gN tcontN = 0 ∀x∈Γd ð9Þ

where tcontN = tcont ⋅ nΓd is the normal contact stress, and gN = ½½u�� ⋅ nΓd is the normal
opening of the crack. In tangential direction, the “stick” and “slip” conditions are
recognized by using the standard Coulomb’s friction law as
Ff = tcontTk k− μf tcontNk k with μf and cf being the Coulomb’s friction coefficient and
the tangential cohesion, respectively. In addition, tcontT = tcont ⋅mΓd is the tangential
component of the contact traction with mΓd being the unit tangential vector of the
discontinuity. The contact constitutive relation is defined in form of
dtcont =Dcont d½½u�� as (Liu and Borja [22])

Dcont =
ϵNðnΓd ⊗ nΓdÞ+ ϵTðmΓd ⊗mΓdÞ for stick
ϵNðnΓd ⊗ nΓdÞ+ μϵNðmΓd ⊗ nΓdÞ for slip

�
ð10Þ

where Dcont denotes the contact constitutive matrix defined, and ϵN and ϵT are the
normal and tangential Penalty coefficients, respectively. On the other hand, for the
fluid phase the flow exchange between the discontinuity and surrounding porous
medium must vanish in case of crack closure ([23]) as

qd̄ = ẇ ⋅nΓc =0 on Γc. ð11Þ

Following Khoei and Vahab [23], the LATIN method is adopted in order to
impose the contact constrains onto the fluid phase. To this end, a reverse compu-
tational algorithm is utilized to eliminate leakage from the discontinuity into the
domain. In this approach, using an arbitrary penalization parameter, kf , a reverse
leakage q ̄d̄ is imposed as ẇ= − kf ̸μf ½½∇p�� till qd̄ is vanished.

2.3 Model for Multiple Cohesive Crack Growth

Employing the linear cohesive zone model on the basis of Camacho and Ortiz [24]
the cohesive traction is expressed in terms cohesive fracture energy potential ϕ as

tcohs =
∂ϕ

∂gN
nΓd +

∂ϕ

∂gT
mΓd =

tcohs
g

ðgNnΓd + β2mΓdÞ. ð12Þ

in which g is the effective crack opening defined as g=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2N + β2g2T

q
, and t is the

cohesive traction magnitude evaluated as tcohs = ∂ϕ ̸∂g=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtNcohsÞ2 + β− 2ðtTcohsÞ2

q
with tNcohs and tTcohs being the normal and tangential components of the cohesive
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traction, respectively. Moreover, β is the coupling coefficient of the normal and
tangential opening displacement. Based on Li and Ghosh [7, 8] the crack growth
direction is determined by imposing the equivalence of the cohesive fracture energy
ϕ at the stage of complete decohesion to the fracture energy release rate, Gc. The
cohesive fracture energy at crack tip Ti in direction α is expressed as

ϕTi
=

Z gðαÞ

0
tcohsðαÞ dg= ge

2σmax
ðσ2max − tcohsðαÞ2Þ, ð13Þ

where tcohsðαÞ is the effective cohesive traction associated with the direction α , ge is
the separation value at which the cohesive traction is vanished. Accordingly, the
crack growth direction is predicted as the direction along which the cohesive
fracture energy is maximized. The cohesive fracture energy on the other hand is
used to evaluate the crack growth increment associated with each crack tip. In this
manner, each crack tip propagates an incremental length such that the cohesive
fracture energy is vanished. To this end, an arbitrary point, T̄i , located along the
extension of crack tip Ti in direction α is chosen and the crack growth increment,
▵ℓi , corresponding to the crack tip Ti is computed as

▵ℓi =
ϕTi

ϕTi
−ϕT̄i

ℓTi T̄i

��� ���, ð14Þ

in which ℓTi T̄i
is the length of line segment Ti to T̄i .

3 Discretization of the Governing Equations

The strong discontinuity in displacement field due to the existence of fractures
necessitates that the displacement field to be enhanced by employing the Heaviside
enrichment function. Meanwhile, the weak discontinuity in the pressure field due to
discontinuous pressure gradient is incorporated by adopting the modified level-set
enrichment function. Accordingly, the enriched approximation for the displacement
field uðx, tÞ is written as

uhðx, tÞ=Nstd
u ðxÞUðtÞ+NHev

u ðxÞŨðtÞ, ð15Þ

where Nstd
u is the standard shape function matrix associated with the standard DOFs

UðtÞ, and NHev
u = ∑NOD

I =1 NuIðxÞ HðφðxÞÞ−HðφðxIÞÞð Þ is the shifted Heaviside
enrichment shape function matrix corresponding to the enriched DOFs ŨðtÞ. The
X-FEM approximation of the pressure field given by
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phðx, tÞ=Nstd
p ðxÞPðtÞ+Nridge

p ðxÞ P̃ðtÞ, ð16Þ

where Nstd
p ðxÞ is the standard shape function matrix associated with the standard

DOFs PðtÞ, and Nridge
p = ∑NOD

I =1 NpIðxÞ ψðxÞ−ψðxIÞð Þ is the ridge enrichment shape

function matrix associated with the enriched DOFs P̃ðtÞ, where
ψ JðxÞ= ∑NOD

I =1 NpIðxÞ φI

�� ��− φðxÞj j.
The time domain discretization is carried out using the well-known generalized

finite difference theta-scheme. The successive value of the unknowns at time tn+1 is
expressed versus known variables at time tn with time increment of Δt= tn+1 − tn as
[25]

𝕌ṅ+1 =
θ

Δt
𝕌n+1 −𝕌nð Þ+ 1− θð Þ𝕌ṅ, ð17Þ

for the displacement field and,

ℙ ̇n+1 =
θ

Δt
ℙn+1 −ℙnð Þ+ 1− θ

� �
ℙṅ, ð18Þ

for the pressure field where 𝕌= ⟨U, Ũ⟩ and ℙ= ⟨P, P̃⟩ are the vector of DOFs of
the displacement and pressure fields, respectively. Note that θ and θ are the method
parameters in range of 0–1.

4 Computational Algorithm for Multizone HF

Hydraulic fracturing treatments are generally performed by injection of the frac-
turing fluid into the bore hole at a prescribed injection rate. For multizone hydraulic
fracturing treatments a new challenge arises due to the fact that the fracturing fluid
is injected into a group of perforations instead of a single one. In this case, the
fracturing fluid inflow to various perforations will be different, but the fluid pressure
at the opening of the perforations will be identical. Here, a straightforward iterative
algorithm is proposed to fulfil the constant fracturing fluid pressure constrain at all
perforations whilst the total injection rate is maintained. To this end, an initial
distribution in accordance to the previous time step is supposed for the fracturing
fluid flow across all active perforations. The cumulative fluid pressure PTotal, the
total flow rate QTotal and the average fluid pressure PTotal at the ith iteration are
calculated as

PTotal = ∑
2Nperf

j=1
Pi

j, QTotal = ∑
2Nperf

j=1
Qi

j, PAverage =PTotal ̸2Nperf ð19Þ
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where Pi
j and Qi

j denote the nodal values of the fluid pressure and flow rate
corresponding to the jth node of the perforated element edge, with Nperf being the
total number of perforations. So to obtain a similar value for the fracturing fluid
pressure at all perforations, the flow rate at each perforation is modified by

Qi+1
j =Qi

j 1+
Pi

j −PAverage

PTotal

�����
�����
β

*Sign(Pi
j −PAverageÞ

0
@

1
A, ð20Þ

where β is a modification factor in range of 0–1. Here, β=0.8 is assumed to deliver
the optimal convergence rate.

5 Numerical Simulations

In order to illustrate the robustness of the proposed framework in the study of
multizone hydraulic fracturing treatments, several examples are investigated
numerically. The first example deals with a group of perforations subjected to
similar injection rates in order to highlight difficulties encountered in modeling of
multizone hydraulic fracturing. In the second example, the algorithm proposed for
the multizone hydraulic fracturing is elaborated to show the extent of its success in
resolving the modeling issues as well as to further imply the practical complexities
of the problem.

5.1 Multiple Hydro-Fractures Subjected to Identical
Injection Rates

Consider a 2.5 × 5 m block containing three perforations with initial length of
ℓHF =0.15m at varying vertical spacings of d=0.25, 0.5m (see Fig. 3). The
fracturing fluid is injected at a total rate of Q=0.001 m2 ̸s, and is distributed
uniformly across all three existing perforations. Meanwhile, the results for an
isolated hydro-fracture subjected to the same injection rate are also included for
reference. In this manner, the primary idea behind multizone hydraulic fracturing is
investigated and compared with that of the isolated case presented in the previous
example. The material properties of poroelastic medium are also given in Table 1.

The final crack growth paths associated with the perforations are represented in
Fig. 4. As can be seen, in case of d=0.25m the upper and lower branches are
diverted towards the neighboring layers (outside of the pay zone). However, for
d=0.5m all branches have evolved in a nearly parallel pattern, yet for considerably
different lengths. For the same total injection rate, the analysis shows that the
cumulative hydro-fracture lengths are increased by a ratio of 47% and 36%,
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Fig. 3 Multiple hydro-fractures subjected to similar injection rate; problem definition and
boundary conditions

Table 1 Material properties
of the saturated porous block

Elasticity modulus E=15.96GPa

Poisson’s ratio ν=0.33
Biot’s constant α=1
Porosity n=0.19
Density ρs =2000 kg ̸m3

Water density ρw =1000 kg ̸m3

Bulk modulus of water Kw =3.0GPa
Bulk modulus of solid grains Ks =36.0GPa
Permeability kf =1.0 × 10− 12 m2

Viscosity of water μw =1×10− 3 Pa s
Penalty number in normal direction KN =1×108 MPa ̸m
Friction coefficient μf =0.0

Tensile strength σt =1.0MPa
Fracture energy Gf =100N ̸m

0.25 m 0.5 m Isolated HFd d

Fig. 4 Final crack growth paths for multiple hydro-fractures subjected to similar injection rate
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respectively, for d=0.25 and 0.5m in comparison to the isolated hydro-fracture,
which is a substantial improvement.

The variations with time of the crack mouth pressure (CMP) for all perforation
spacings in Fig. 5. As can be seen, the fracturing fluid pressure at the upper and
lower perforation openings is considerably greater than the central branch. Provided
that all hydro-fractures are connected to the same well bore, the values obtained for
the fracturing fluid pressures clearly violate the physics of the problem as reported
by Wu and Olson [26]. Thus, the assumption of a uniform distribution for the
fracturing fluid flow across all perforations assumed in the literature (e.g. see Yao
[27] and Samuelson et al. [28]) is unrealistic. Thus the results suggested in this
example cannot be relied upon.

5.2 Multizone Hydraulic Fracturing

The final example explores the multizone hydraulic fracturing treatment and the
associated practical issues. Using the configurations of the previous example, the
hydraulic fracturing treatment is performed through the imposition of a total
injection rate of Q=0.001 m2 ̸s, which is distributed across existing perforations
by incorporating the multizone HF algorithm introduced in Sect. 4. In this example,
the capability of the proposed methodology in elimination of the inconsistencies in
the fracturing fluid pressure is evaluated.

The final crack growth trajectory is presented for all perforation spacings in
Fig. 6. As can be seen, the majority of crack propagation occurs along the central
branch, while the upper and lower perforations only show a negligible growth. Our
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Fig. 5 The variations with time of the crack mouth pressure (CMP) multiple hydro-fractures
subjected to similar injection rate
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analysis shows that the cumulative crack lengths in comparison to the isolated
perforation are slightly increased by a ratio of 8% and 1%, respectively, for d=0.25
and 0.5m. Taking into account that the upper and lower perforations are nearly
remained at their initial configuration, the multizone hydraulic fracturing executed
can be interpreted as an unsuccessful treatment. This appears to accord with various
reported cases of failed multiple fracturing treatments in the field (Ahmad et al.
[29]).

The variations with time of the crack mouth pressure (CMP) is presented in
Fig. 7. Unlike the previous example, no inconsistency is observed for the fracturing
fluid pressure at the perforation openings. This indicates the success of the proposed
computational algorithm in modelling of multizone hydraulic fracturing treatments.
Contours of the pore fluid pressure are presented in Fig. 8, with identical fluid
pressures obtained at the perforation openings. Note that the fracturing fluid pres-
sure is fully developed along the central branch, while for the upper and lower
branches it is remained within the initial segments of the perforations.

0.25 m 0.5 m Isolated HFd d

Fig. 6 Final crack growth paths for multi-zone hydro-fractures growth in a saturated porous block
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Fig. 7 The variations with time of the crack mouth pressure (CMP) for multi-zone hydraulic
fracturing
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6 Conclusions

In this paper, a computational framework is presented for the study of multizone
hydraulic fracturing treatments within saturated two-phase porous media. The
hydro-fracture inflow is modeled based on the Darcy law, where the fracture per-
meability is evaluated by using the cubic law. The cohesive fracture energy func-
tions are invoked to determine the multiple crack growth pattern. Provisions are
made for the plausible crack closure in the solid phase by means of Kuhn-tucker
inequalities embedded in an X-FEM Penalty method. In addition, for the fluid phase
the zero leak-off constrain is imposed through the application of a LATIN based
contact algorithm. X-FEM is utilized in order to incorporate the strong disconti-
nuities in the displacement field as well as the weak discontinuities within the
pressure field. Time domain discretization is performed by means of the finite
difference theta-scheme. A computational algorithm is introduced for dealing with
the fracturing fluid flow distribution across the existing perforations. Several
numerical examples are presented to demonstrate the robustness of the proposed
X-FEM framework in the study of multizone hydraulic fracturing treatments in
saturated porous media. It is shown that the computational algorithm successfully
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0.25md 0.5md

(a) 0.5st

(b) 1.0st

(c) 1.5st

Pa 
0.0E+00
-6.0E+05
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Fig. 8 Contours of fluid pressure for multi-zone hydraulic fracturing at different time steps
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can resolve all the inconsistencies encountered in the process of multizone
hydraulic fracturing.
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Seismic Wave Field Generation
in Heterogeneous Geological Media
Containing Multiple Cavities

Ioanna-Kleoniki Fontara, Petia S. Dineva, Frank Wuttke
and George D. Manolis

Abstract We develop a boundary integral equation (BIE) method for the numer-
ical simulation of seismic motions in geological media containing multiple cavities
under anti-plane strain conditions. We consider a half-plane of heterogeneous
structure subjected to either time-harmonic incident shear waves or to body waves
radiating from a seismic point source. Three different types of material hetero-
geneity are considered: (a) The density and shear modulus vary proportionally as
quadratic functions of depth, but the wave speed remains constant; (b) the material
is viscoelastic, with a shear modulus and density that vary with respect to the spatial
coordinates in an arbitrary fashion, with a wave velocity is frequency and position–
dependent; (c) the material has a depth-dependent shear modulus and constant
density, yielding a linear wave velocity profile. This necessitates the development
of three frequency-dependent integral equation schemes based on: (a) A Green’s
function for a quadratically-graded elastic half-plane; (b) a fundamental solution for
a viscoelastic full-plane with position–dependent wave speeds; and (c) a funda-
mental solution for an elastic full-plane with a linearly varying wave speed.
Numerical examples are presented for inhomogeneous geological media containing
any number of cavities of arbitrary geometry and position.
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1 Introduction

The geological depth scale reveals that the upper surface of the Earth has a strongly
heterogeneous structure due to the existence of both free-relief, non-parallel soil
layers, pronounced material variation with distance, plus the presence of cavities,
inclusions, cracks and faults, all in addition to man-made buried infrastructure. One
consequence of this complex geology of the Earth is that it causes significant spatial
variations in the seismically-induced ground motions in earthquake-prone regions
of the world, which may result in large amplification effects during earthquakes.
From a mathematical point of view, the development of models describing the
mechanical behavior of graded media, i.e., materials whose properties are
spatially-dependent, involves the solution of partial differential equations with
non-constant coefficients. The predominant numerical method used currently is the
standard finite element method (FEM) along with its various extended forms.
Boundary integral equation methods (BIEM) are an alternative, because of their
efficient handling of infinite and semi-infinite domains and their high accuracy in
evaluating stress fields [1]. In general, dynamic analyses of graded materials by
BIEM are possible only if the appropriate fundamental solutions are available [2].
An overview of BIEM numerical solution of dynamic problems involving graded
media containing multiple discontinuities can be found in the recent review by
Manolis and Dineva [3].

2 Problem Statement

Consider a geological half-plane Ω with free surface Sf containing N cavities of
arbitrary shape and subjected to the following loads: (a) an SH elastic wave
propagating in the plane x3 = 0, tracing an incident angle θ with respect to the
coordinate axis Ox1; (b) a point force at source x0 = (x01, x02). In both cases, time
harmonic conditions are assumed to hold and the loads are functions of frequency
ω. Next, the deformation mode is anti-plane strain and the only non-zero variables
are the out-of-plane displacement component u3(x, ω) and the stresses σi3(x, ω),
i = 1, 2. The material is described by a position-dependent shear module µ(x) and a
density ρ. The governing equation and corresponding boundary conditions are

∇. μ xð Þ∇u3 x,ωð Þf g= ρ xð Þω2u3 x,ωð Þ−ψ f03δ x, x0ð Þ, x∈Ω ð1Þ

t3 x`1, x2,ωð Þ= σ3j x`1, x2,ωð Þ nj x`1, x2ð Þ =0 , x∈ Sf ∪Γ ð2Þ

In the above, position vector is x = (x1, x2), ni are the components of the out-
ward pointing normal vector along a surface, index ψ is either = 0 or = 1 when the
load is respectively an incident wave or a point load at x0 with magnitude f03. Also,
∇ is the gradient operator, (.) is the inner product and a summation convention over
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repeated indices is implied. For an infinitely extending boundary, the Sommerfeld
radiation condition is satisfied. Three different types of inhomogeneity (i.e.,
material gradient) are now considered:

(1) Type A, where the material is isotropic, but both density and shear modulus
vary proportionally in a quadratic way in respect to the depth of the half-plane,
yielding a macroscopically constant wave speed:

μ x1, x2ð Þ= μ0h x2ð Þ; ρ x1, x2ð Þ= ρ0h x2ð Þ; h x2ð Þ= bx2 + 1ð Þ2 ð3Þ

We define h(x) as the inhomogeneity function, where b ≤ 0 is the magnitude
and the reference material constants are µ0 = µ (x1, 0); ρ

0 = ρ (x1,0).

(2) Type B, where the material is viscoelastic (Kelvin-Voigt model) and both shear
modulus and density have a variation with respect to depth. This yields a wave
speed that is both frequency and position–dependent. The shear modulus is now
complex-valued and is defined as µ = µ* = Re(µ*)−iωµˊ, where the real part is
position-dependent. The imaginary part µˊ indicates dissipation and is com-
puted from the logarithmic decrement in the motion amplitude as
δ= π ̸Q=2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωμ ̄ ̸Reðμ*Þp

, with Q the dimensionless quality factor, see
Manolis and Shaw [4].

(3) Type C, with position-dependent shear modulus and constant density, i.e.,
µ = µ (x2); ρ = ρ0 (0), yielding linear profiles in the wave speed as Cs(x2) =
Cs
0(1 + x2/H). Parameter H > 0 is defined in the interval 10−7<H/α < 10+7,

where α is the characteristic heterogeneity length [5], and Cs(−H) = 0. In all,
the total wave field comprises free-field motion (u3

ff, t3
ff) plus the scattered waves

(u3
sc, t3

sc).

3 BIEM Formulation and Solution

The above boundary-value problem (BVP) is reformulated as integral equations
along the inhomogeneous domain boundaries Sf ∪Γ through Betti’s reciprocal
theorem in conjunction with the appropriate fundamental solution (or Green’s
function). As discussed in Fontara et al. [6], two basic BIEM schemes are devel-
oped, one using a Green’s function for a graded half-plane in the case of the
material profile of Type A and another using a fundamental solution for the graded
full-plane in the case of material profiles of Type B and Type C.

The system of BIE which results following discretization of all surfaces in
question by single node, line boundary elements (BE) and subsequent collocation of
the field variables (displacement and tractions) at all nodal points is numerically
solved using matrix inversion. This way, all unknown field variables are expressed
in terms of their prescribed values. For a well-posed BVP, this procedure results in
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a system of N equations obtained with respect to all N unknowns at the surfaces of
the BVP in question. The numerical procedure was implemented using Matlab.

4 Numerical Simulation and Results

A large number of verification examples were conducted [6] to ascertain the
robustness of the BIEM formulation, with comparisons with published work (e.g.,
[7]). Following that, a series of parametric studies were conducted involving buried
cavities (circular, vertically elongated and horizontally elongated ellipses) in three

Fig. 1 Displacement amplitude along the free surface of Type B half-plane with inhomogeneity
parameter c due to concentrated load at point x0(0, −15α) with dimensionless frequency η = 0.5:
All embedded cavities are vertically elongated ellipses with semi-axes α and 2α
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inhomogeneous material profiles. These involve a centered point force at a depth of
15α from the surface with dimensionless frequency η = 0.5. A selective presen-
tation of these results in given in Figs. 1, 2, and 3 for the stress field distribution and
the displacement amplitude along the reference cavity perimeter, plus the dis-
placement amplitude at the free surface as functions of the inhomogeneity
parameter c.

Fig. 2 Stress distribution at the perimeter of a reference cavity in a half plane with inhomogeneity
magnitude c at dimensionless frequency η = 0.5 due to an SH-wave from an embedded source
located at point (0, −15α): All cavities are vertically elongated ellipses with semi-axes α, 2α. (c−w
from top left: 1 cavity, 2 horizontal cavities, 2 vertical cavities, 3 cavities)
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5 Conclusions

In this work, we presented a new BIEM development for the numerical solution of
SH-wave propagation in graded geological media containing any number of cavi-
ties of arbitrary shape and position. The numerical results reveal the dependency of
the wave fields and of the zones of dynamic stress concentration to the following
key factors: (a) material property variation within the soil mass; (b) characteristics
of the applied seismic loads; (c) shape, position and number of cavities; and
(d) interaction phenomena between the cavities and the free surface.

Fig. 3 Displacement amplitude along cavity 1 embedded in the half-plane with Type B
inhomogeneity magnitude c = 2 versus frequency due to SH-wave emanating from a source
located at (0, −15α): All embedded cavities are circular with radius α
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Multiscale Investigation
of Microcrack-Induced Instability in Rocks

Mahdad Eghbalian and Richard Wan

Abstract The paper deals with a mathematical description of instability and local-

ization in rocks through a multi-scale modeling strategy with coupled multiphysics.

We adopt a homogenization approach to work out an effective description of micro-

scopic phenomena at the continuum through defining a Representative Volume Ele-

ment (RVE). The role of hydro-mechanical coupling in the transition from an other-

wise initial diffuse state to a localized state can be investigated through the gradual

degradation of the kinematics due to micro-fracture formation.

1 Introduction

Unconventional reservoirs such as tight gas and shales gas are not permeable enough

for the fluid production to be economically viable. Thus, increasing the hydraulic

conductivity of such porous media through induced material failure and instabili-

ties is of prime interest. Pressurized fluid causes the dispersed micro-fractures to

propagate so as to ultimately increase the permeability of the reservoir. Thus, the

hydro-poromechanics of such heterogeneous media is central to the understanding

of material failure processes during hydraulic fracturing.

Phenomenological approaches to formulate the hydro-poroelasticity of rocks lack

micromechanical insight and involve several parameters to be calibrated, many of

them are devoid of any physical meaning. This motivates the pursuit of microme-

chanical approaches where all the underlying multiphasic, micromechanical phe-

nomena can be accounted for in an effective medium formulation. However, current

micromechanical models are limited in the sense that they either consider only one

scale of porosity, or neglect the hydraulic coupling on fracture behavior of the mate-

rial (see e.g. [1, 2]).
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(a) (b)

Fig. 1 Structure of fractured porous medium: a Homogenized medium in a macroscale problem,

b Tiny cracks dispersed within the porous matrix

This paper aims at addressing the mentioned gaps and building a

continuum framework that contains the key elements necessary for describing the

hydro-mechanical behavior of a saturated porous medium with arbitrarily distrib-

uted strong kinematic discontinuities (Fig. 1) and their transition to a localized state.

2 Mathematical Framework

In this section, we address the question of how an arbitrary distribution of micro-

fractures affects the hydro-poroelastic behavior of the porous matrix. In the homog-

enization method, we replace a microscopically heterogeneous material point of

the body with a fictitious homogeneous one. The average-field theory defines the

upscaled quantities as the volume average of the microscopic fields. In this man-

ner, the material point behavioral equations are closely related to a boundary value

problem defined on the microstructure.

2.1 Fracture Behavior of Rock

In what follows, a multiscale description of fractured rock is presented. The behavior

of the material under compressive loading is addressed relevant to the occurrence of

instability in a triaxial rock sample.

We start with the behavioral equations of solid and fluid phases in the microstruc-

ture of the rock (Fig. 1b). Darcy’s law is invoked for fluid flow in both matrix and

micro-cracks:

vi =
{

−𝛱 𝜕p∕𝜕xi 𝛺m
−𝛱 ′

𝜕p∕𝜕xi 𝛺c
(1)
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with 𝛱 and 𝛱
′

are constants related to the permeability of the medium. Moreover,

the following relation for the divergence of the fluid velocity is recalled:

𝜕vi
𝜕xi

=

{
−
(
�̇�f − �̇�

0
f

)
∕𝛷f 𝛺m

0 𝛺c

(2)

where 𝛷f is the change in the fluid fraction. The momentum balance and constitutive

equations of the poroelastic matrix together with the mass balance equation are:

𝜕𝜎ij∕𝜕xj = 0 (3a)

𝜀ij =
1
2G

𝜎ij +
𝜅 − 3
8G

𝜎kk𝛿ij +
𝛼𝜅

′

2G
p𝛿ij (3b)

𝛷f −𝛷
0
f = 𝛼𝜀kk +

p
Z

(4)

where (𝛼) is the Biot’s constant, (Z) is the storage coefficient and (G) is the shear

modulus. Moreover, 𝜅 and 𝜅
′

are constants for plane (stress/strain) conditions. The

coupling between solid and fluid field equations arises from the mass balance equa-

tions. All the parameters of the system are derived micro-mechanically through a

homogenization process based on the porosity of the matrix (nf ), bulk and shear

modulus of the solid skeleton (Ks
and Gs

respectively) in [1, 3].

The macroscopic stress tensor (𝛴ij) and pressure (P) are prescribed through the

uniform traction boundary condition:

ti = 𝜎ijnj =
{

𝛴ijnj 𝛤
pcni 𝛤c

(5)

and uniform pressure p = ∇iPxi on 𝛤 . The interface conditions necessary for solv-

ing the boundary value problem are vfi = vpi and 𝜎
f
ijnj = 𝜎

p
ijnj defined on 𝛤c. The sub-

scripts f and p refer to the flow in the crack and in the porous matrix respectively;

while pc refers to the pressure inside the micro-crack. The above uniform bound-

ary conditions ensure that the volume average of stress and pressure gradient are

equal to their prescribed macroscopic values, i.e. ⟨𝜎ij⟩𝛺t = 𝛴ij and ⟨∇ip⟩𝛺t = ∇iP.

The macroscopic description is constructed by formulating the average strain (Eij),

average fluid velocity (Vi) and average change in fluid fraction

(
𝛷f −𝛷

0
f

)
from the

solution of the field variables (p, ui).
One-way coupling of the above system of equations can be advocated in the steady

state case where the pressure field is not affected by changes in the strain field. The

Darcy/Darcy coupling has been investigated in [4]. Also, closed-form solutions exist

in the literature for deformation analysis of line-cracks subjected to internal traction

(saturated crack) and far-field stress [5].
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Furthermore, micro-fractures are considered as ellipses with high aspect ratio

𝛽. Also, n𝜃 cracks per unit area (volume) are considered in direction 𝜃 each hav-

ing half-foci length r
𝜃

with their surface density denoted by 𝜔
𝜃
. The Mori-Tanaka

scheme assumes the effect of micro-cracks presence and their interaction can be

approximated by considering each of them being embedded in an infinite matrix

subjected to far-field average stress and pressure gradient of the matrix. Based on

the above assumptions, the average law is written in the form of integrals over the

micro-cracks and matrix domains. Solving for the defined system of equations, along

with application of the divergence theorem and Mori-Tanaka scheme lead to:

Eij =
1
2G

𝛴ij +
𝜅 − 3
8G

𝛴kk𝛿ij +
(𝜅 + 1) 𝛽

8G

(
𝛴imT

(
𝜉jm

)
+ 𝛴jmT

(
𝜉im

)

− 𝛴kkT
(
f
(
r
𝜃

)
𝜉ij
)
+ 2𝛴mnT

(
f
(
r
𝜃

)
𝜉ij𝜉mn

) )

+ 1
4G

(((
𝜅 − 1 − 2𝛼𝜅 ′) T ((

n𝜃 − w𝜃
)
∕n𝜃

)
+ 2𝛼𝜅 ′)

𝛿ij + (𝜅 + 1) 𝛽T
(
𝜉ij
))

p
(6)

𝛷f −𝛷
0
f =

(𝜅 + 1) 𝛽
4G

(
𝛴lmT

(
𝜉lm

)
− 1

2
𝛴kkT

(
f
(
r
𝜃

)
𝜉ll
)
+ 𝛴mnT

(
f
(
r
𝜃

)
𝜉ll𝜉mn

))

+ 𝛼 (𝜅 − 1)
4G

𝛴kk +
(
𝛼
2
𝜅

′

G
+ 1

Z

)(
1 − T

((
n𝜃 − w𝜃

)
∕n𝜃

))
P

+ 𝛼 (𝜅 − 1)
2G

T
((
n𝜃 − w𝜃

)
∕n𝜃

)
P + (𝜅 + 1) 𝛽

4G
T (1) P

(7)

from which the mass balance equation is easily formulated. Also:

𝛱 ij = 𝛱 (1 + (1 + 𝛽)T (1)) 𝛿ij +
1 − 𝛽

2

𝛽
𝛱 T

(
𝜉ij
)

(8)

𝜉ij =

(
sin2 𝜃 −sin 2𝜃

2
− sin 2𝜃

2
cos2 𝜃

)
, T(x𝜃) = ∫

𝜋

0

w𝜃n𝜃
n𝜃 − w𝜃

x𝜃 d𝜃 (9)

The function f (r) is used to take into account the effect of micro-crack lengths on

the tensile field generated around them under compressive loading. This fictitious

tensile force is proportional to the deviatoric stress𝛴t = f (r) ⟨Sn⟩+ [6]; with Sn as the

effective normal deviatoric stress acting on the micro-crack and added to the stresses

that the micro-crack is subjected to. Furthermore, ⟨x⟩+ implies ⟨x⟩+ = (x + |x|) ∕2.

2.2 Micro-Structure Evolution (Instability)

A hydro-mechanical crack growth criterion based on Fracture Mechanics is used here

(KI − KIC = 0) [7]. Mode-I fractures are assumed to be dominant. The effects of pore
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pressure is considered through introducing the effective stress in the formulation;

while the local tensile stress discussed in previous section is also considered:

KI =
√
r
𝜃

[
𝛴

e
n

(
fc

fc + ⟨−𝛴e
n⟩+

)m

+ 3g
(
r
𝜃

) ⟨Sen⟩+
]

(10a)

𝛴
e
n = n𝜃i 𝛴

e
ijn

𝜃

j , Sen = n𝜃i S
e
ijn

𝜃

j , Seij = 𝛴
e
ij −

(
𝛴

e
kk

3

)
𝛿ij (10b)

whereKI andKIC are the mode-I stress intensity factor and fracture toughness respec-

tively, and n𝜃i is the normal to the micro-crack face. Also, the following form has been

suggested in [7] for g
(
r
𝜃

)
, which ensures a stable micro-crack growth:

g
(
r
𝜃

)
=
√
𝜋f

(
r
𝜃

)
∕3 =

{
𝜂rf∕r𝜃 r

𝜃
≤ rf

𝜂 r
𝜃
> rf

(11)

where fc = KIC∕
(
𝜂
√rf

)
and 𝜂 is a material constant and rf is the threshold micro-

crack length for the RVE to become unstable and fail.

2.3 Degradation Behavior of Lac Du Bonnet Granite

Experimental results on Lac Du Bonnet granite are chosen to compare with the out-

put of the model set up here. The RVE includes m = 500 sets of microcracks uni-

formly distributed in the initial state and all having the same length. The parame-

ters used in the calculations are KIC = 1.03MPa m
1
2 , Ks = 328GPa, Gs = 54GPa,

r0 = 3mm, rf = 9mm, nf = 0.01, 𝛱 = 5.4 × 10−22 m
2∕Pa s, 𝜂 = 0.06, n𝜃 = 6.0 ×

104 m
−2

and 𝛽 = 2000. The poroelastic parameters are calibrated from results

reported in [7]; while parameters related to crack evolution are the same as the one

used in the above-mentioned work.

We first let the RVE reach an initial equilibrium state by applying an equal lateral

and axial compressive stresses. Then, an axial strain increment of ΔEy = −2 × 10−5
is applied to the RVE in each loading step. The boundary conditions are such that

the fluid pressure P is constant and equal to zero during the test.

In Fig. 2a, the deviatoric stress at failure is plotted against the confining pres-

sure. A good agreement between the model predictions and experimental results is

observed. The distributions of microcrack lengths at the initial configuration, includ-

ing intermediate states towards failure are depicted in Fig. 2b, where as expected, the

microcrack growth is indeed aligned with the direction of the applied axial stress.

It is worth mentioning that the permeability enhancement is not investigated

herein and is the subject of a separate study. The reason is that the model devel-

oped in Sect. 2.1 is valid when we deal with a disconnected network of micro-cracks.
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Fig. 2 a Deviatoric stress at failure versus the confining pressure. b Crack length distribution at

different stages of loading

Numerical simulation results [8] show that the situation is different when some part

of these micro-cracks are connected such that they form channels. Hence, in order to

do a comparison with experimental results; forming channels should be included by

considering the Navier-Stokes solution for laminar fluid flow between two parallel

channel faces along the length of the channel.

3 Concluding Remarks

A comprehensive hydro-mechanical formulation is presented for a porous medium

with embedded micro-cracks in the fully saturated case. The generally anisotropic

behavior of the material is described by a set of closed-form relations through a

homogenization process starting from the underlying coupled physics at the

microscale. The upscaling process is carried out within the framework of mean-field

theory to finally obtain the macroscopic properties solely from those of the micro-

constituents. It is demonstrated in the case study of Lac Du Bonnet granite that the

model predictions based on material instabilities through micro-crack evolution and

coalescence are quite satisfactory.
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Borehole Strengthening in Gas Wells
from Near Borehole Drying

Euripides Papamichos

Abstract The effect of flow-through drying in sand production is analyzed. In
flow-through drying evaporation of the connate water of the reservoir sandstone
occurs into the gas phase during natural gas production. The strength of sandstone
is affected by the water saturation with dry rock being stronger than water saturated
rock. Drying of the formation near the well due to gas flow will thus lead to an
increase in the critical stresses for failure and sand production. Flow-through drying
of a near wellbore formation is coupled with a constitutive model with water
saturation dependent strength and stiffness to analyze the coupled problem of
flow-through drying and mechanical behavior of a material. Results from finite
element simulations are presented and compared with experimental results.

1 Introduction

Evaporation into the gas phase of the connate water of reservoir sandstones occurs
during flow-through drying in natural gas production, as a result of the com-
pressibility of the gas. Near the wellbore, the gas pressure drops and thus its relative
humidity level drops as well. When an unsaturated gas flows through a medium, it
can evaporate the connate water in the medium. Drying of the rock may lead to
higher strength and stiffness as sandstones are often water sensitive. The result is
higher borehole strength and delayed sand production in gas wells compared to oil
wells in the same formation. Modeling of flow-through drying involves the solution
of axisymmetric simultaneous, two-phase flow equations of two immiscible fluids,
a single-component liquid (water) phase and a binary (air-vapor) gas phase. These
comprise the conservation equations for the water and gas components, constitutive
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equations for relative permeability and capillary pressure, and Raoul’s law for
phase equilibrium [1–3]. Liquid evaporation is governed by a diffusion–reaction
equation, where compressibility-driven drying acts as the reaction and capillarity
acts as diffusion. The reaction rate increases with factors that favor gas expansion,
i.e. gas mobility, flow rate, radius of well influence. Results show the significance
of drying in wellbore strengthening and sand production avoidance in gas wells, an
effect that is verified by experimental results.

2 Flow-Through Drying in Gas Wells

The formulation is based on the overall compositional balance equations for each
component. In the gas fluid flow and evaporation problem under consideration,
there exists two components (c) and two phases (p). Phase p = 1 (or g) is the binary
(air-vapor) gas phase and phase p = 2 (or w) is the single-component liquid (water)
phase. Component c = 1 (or H2O) is the connate water in the pores of the solid and
component c = 2 (or N2+) is the dry gas. Symbol N2+ signifies that dry gas is a
mixture of various constituents, among others nitrogen, oxygen, argon and carbon
dioxide, which are all viewed here as comprising one component. The solid phase
does not enter in the formulation since it is assumed that there is no adsorption of
the H2O or N2+ in the solid. In the absence of mass generation or destruction e.g.
by chemical reactions, the overall conservation of each component over the two
phases is written as [4]

∂WN2 +

∂t
+NN2 +

i, i =0,
∂WH2O

∂t
+NH2O

i, i =0 ð1Þ

where t denotes time, a subscript preceded by comma denotes differentiation with
respect to that coordinate and repeated indices are summed. In Eq. (1), the first term
in both equations corresponds to the rate of accumulation of each component in
both phases in a volume V and the second term to the rate of transport of each
component in minus out of V. Thus, WN2 + is the sum of the concentrations of N2+
in each phase and WH2O is the sum of the concentrations of H2O in each phase with
units of mass/volume (kg/m3). Similarly, NN2+

i is the sum of the fluxes of N2+ in
each phase and NH2O

i the sum of the fluxes of H2O in each phase along the
i-direction with units of mass/(surface × time) (kg/(m2 ⋅ s)). In the absence of
dispersion in the phase velocities and no dissolution of N2+ in the water phase

∂

∂t
ϕ 1− Swð Þ 1− yH2O, g

� �
ρg

Mg

" #
+

1− yH2O, g
� �

ρg
Mg

qgi

" #

, i

=0 ð2Þ

∂

∂t
ϕ

ρw
MH2O

Sw +ϕ 1− Swð Þ yH2O, gρg
Mg

� �
+

ρw
MH2O

qwi +
yH2O, gρg

Mg
qgi

� �
, i
=0 ð3Þ
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where ϕ is the porosity, ρg and ρw are the gas and water phase densities, Sw is the
water phase saturation, qgi and qwi are the gas and water phase fluxes (m/s),
MH2O =18.01528 g ̸mol is the molecular weight of H2O, MN2 + = 28.97g ̸mol the
molecular weight of N2+, i.e. dry air, Mg the average mass of a mole in the gas
phase given as Mg = yH2O, gMH2O + yN2 + , gMN2 + , and yH2O, g and yN2 + , g the H2O and
N2+ mole fractions in the gas phase, respectively. For isothermal processes and for
constant with time porosity, using the ideal gas law, Raoult’s law for partial vapor
pressures and Dalton’s empirical law for partial pressures of gas mixtures, Eqs. (2)
and (3) result in

ϕ
∂

∂t
1− Swð Þpgs

� 	
+mi, i =0 N2 + conservation

ϕ
∂Sw
∂t

+ qwi, i + εqgi, i =0 H2O conservation

ð4Þ

where pgs = pg − psat with pg the total gas phase pressure and psat the vapor satu-
ration pressure which can be calculated using Antoine’s equation [5] as a function
of temperature. The mass flux parameter mi = pgsq

g
i , ε= βH2O, g ̸ βH2O,w − βH2O, g

� �
,

where βH2O,w =55508mol ̸m3 and βH2O, g = psat ̸RgT are the mole concentrations of
H2O in the water and gas phases, respectively, the universal gas constant is Rg =
8.3145 m3 Pa/(mol ⋅ °K) and T is the temperature.

In Eq. (8), the gas flux qgi is given by Darcy’s law for multiphase flow while the
water flux qwi is modeled with corner film flow theory [6]

qgi = − κrg Swð Þpgs, i, qwr = −D Swð ÞSw, i ð5Þ

where the relative mobility κrg of gas is defined as κrg Swð Þ= kkrg Swð Þ ̸μg, where k is
the permeability of the medium, krg the relative permeability with respect to gas and
μg the gas viscosity. Moreover, D Swð Þ is the capillary diffusivity function given as
D Swð Þ= agγrc

ffiffiffiffiffi
Sw

p
̸μw where ag a dimensionless pore geometric constant that

ranges between 0.05 × 10−3 and 2 × 10−3 for the rocks reported by Mahadevan
et al. [1], γ the interfacial tension between gas and water and rc the mean pore throat
radius. The variational form of Eq. (4) within a volume V is written as

Z

V

δpgsϕ
∂

∂t
1− Swð Þpgs

� 	
dV −

Z

V

δpgs, imidV +
Z

∂Vm

δpgsminidS=0

Z

V

δSwϕ
∂Sw
∂t

dV −
Z

V

δSw, iqwi dV − ε

Z

V

δSw, iq
g
i dV +

Z

∂Vqw

δSwqwi nidS+

+ ε

Z

∂Vqg

δSwq
g
i nidS=0

ð6Þ
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The above system of nonlinear equations is discretized in space with a finite
element scheme using linear time interpolation functions. The resulting system of
nonlinear equations is solved with the Newton–Raphson method. For the hollow
cylinder or borehole problem, an axisymmetric formulation is implemented. The
equations are solved under the initial condition Sw = Swi at t = 0, zero water phase
flux boundary conditions at the external re and internal ri radii

qwr
��
re
= −D Swð ÞSw, rjre =0, qwr

��
ri
= −D Swð ÞSw, rjri =0 ð10Þ

and prescribed gas pressures pg
��
re
= pe at re and pg

��
ri
= pi at ri.

Figure 1 presents saturation profiles for five different times for a hollow cylinder
specimen with applied gas pressure pe = 0.3 MPa and pi = 0.1 MPa at the external
and internal radii, re = 0.1 m and ri = 0.01 m, respectively. The initial Sw =
Swi = 0.4, ϕ = 0.25, ag = 0.001, k = 0.2 D, krg = 0.7, μg = 0.018137 cP,
T = 293.15 °K, γ = 0.072 N/m, μw = 1 cP and rc =

ffiffiffiffiffiffiffiffiffiffi
8k ̸ϕ

p
. Two cases with and

without capillary wicking are compared. In the second, the surface tension is set
equal to zero. The effect of capillarity is to move the water in the water phase
towards the hole smoothing out the saturation profile.

Moreover, it fuels evaporation by supplying water close to the hole where
evaporation is stronger due to decompression. The effect of flow-through drying in
borehole stability and sand production is investigated by comparing the cavity
closure curves and the plastic shear strains at the cavity of a hollow cylinder for the
case of zero drying, i.e. with Sw = Swi and the case after 5 h (18,000 s) of drying
(with no capillary wicking). The material obeys the Mohr-Coulomb yield and
plastic potential laws with a tension cutoff Tc (Fig. 2) that follows an exponential
decay function with saturation Tc Swð Þ= Tc0 + Tc1 exp −Tc2Swð Þ where Tc0, Tc1 and
Tc2 are calibration parameters (Fig. 2). Such a model has been used to model the
water sensitivity of chalks [7].

Figure 3 compares the cavity closure curves versus the internal tangential strain
εθi = uri/ri which expresses the radial hole closure normalized by the cavity radius.

Fig. 1 Saturation radial
profiles for constant relative
permeability for various times
in seconds. Results for zero
surface tension (solid lines)
and non-zero surface tension
(dashed lines)
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It can be seen that after drying the sandstone becomes both stiffer and stronger. The
experimental results are for Red Wildmoor sandstone that is strongly water sensi-
tive [8, 9]. Moreover, if a criterion for hole failure is set to a critical plastic strain
gp = 0.044, then the same model can predict failure in both dry and water saturated
rock. It has been shown that the critical plastic strain criterion corresponds to a
bifurcation type condition for hole failure [10].

3 Conclusions

Flow through drying is a strength enhancement mechanism in gas wells. Drying
occurs due to gas decompression near well. A saturation dependent elastoplastic
model was developed to study the mechanical effect of drying in gas wells. The

Fig. 2 Tension cutoff as a
function of water saturation

Fig. 3 External stress versus
cavity closure. Experimental
results on Red Wildmoor
sandstone under different
saturation and flow conditions
(solid lines) and modeling
results (dashed lines)
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flow through drying effect was verified with experimental findings. The results
show the significance of drying in wellbore strengthening and sand production
avoidance in gas wells.
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Wormholes: Chemically Damaged States
in Carbonate Rocks During CO2-Acidized
Fluid Flow

A.P.S. Selvadurai and C.-B. Couture

Abstract Carbonate rocks and carbonate zones in sandstone formations can
experience chemical reaction with CO2 acidized water; this can degrade the fabric
of the carbonate rock leading to the formation of damaged regions that are referred
to as wormholes. The experimental research shows that once a wormhole is formed
in a carbonate zone, the retention capabilities of the storage medium are lost,
leading to unrestricted flow of the injected fluids in the defective zones. Collateral
effects of such erosion processes is the accumulation of dissolved solids in remote
locations that can promote permeability reduction causing potential zones for the
initiation of hydraulic fracture and void-compaction-induced distress to the caprock
barriers.

1 Introduction

The geologic sequestration of fluidized greenhouse gases is identified as a means for
to mitigating the effects of climate change [1, 3, 6, 10, 11, 15–22]. Geologic
sequestration relies on several trapping mechanisms to provide storage security and
longevity of the activity; these include primary trapping mechanisms commonly
identified include adsorption, structural and stratigraphic trapping and hydrody-
namic trapping, which are activated at the time of sequestration for a period of a few
hundred years or more while secondary trapping mechanisms, including dissolu-
tion and mineralization, require in excess of a thousand years. The latter mecha-
nisms offer a degree of permanence to the sequestration process but the primary
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mechanisms are essential for the long term trapping actions to take place. Hydro-
dynamic trapping relies on a geological setting where the injected CO2 can form a
stable plume that displaces the resident groundwater. Many current storage settings
rely on the chemical inertness of the storage formations provided by rocks that are
predominantly of sandstone compositions. Storage rocks with low calcium car-
bonate content have also been selected as host storage rocks.

The basic objective of this research is to investigate whether the interactions of
the injected fluidized CO2 can be detrimental to the fabric of carbonate rocks that
can be encountered as seams or lenses even in sandstone formations. The large
scale erosion of surficial deposits and karst formations created by internal
chemical and mechanical erosion of carbonate rocks is well documented [5] as are
laboratory studies [7, 23]; Bauer et al., [2, 8, 9, 12–14, 24, 25] that investigate the
development of wormhole features during acidized CO2 migration in carbonate
rocks.

2 Experimental Procedures

To investigate defect development in carbonate rocks during acidized CO2 flow
experiments conducted experiments using Indiana Limestone ad the candidate
storage rock. In order to simulate the geostatic stress states that can occur in a typical
storage setting we used a triaxial testing facility capable of accommodating cylin-
drical specimens 50 mm diameter and 100 mm length, and applied radial and axial
stresses to specimens jacketed by an impervious CO2-resistant neoprene membrane,
which isolates the Indiana Limestone sample from the pressurizing fluid in the
triaxial cell. Steady state water flow experiments were first performed to estimate the
reference permeability of the Indiana Limestone samples. The permeabilities varied
between 3.52 × 10−15 m2 and 10.21 × 10−15 m2. The CO2-acidized water supply
was prepared by mixing CO2 and water in an autoclave maintained at a pressure of
10 MPa (approximately 98.7 atmospheres) and the pH of the CO2-acidized water
was measured using a colour graded litmus paper contained in an inspection
chamber. In the six tests performed, the temperatures varied between 24.9 and
26.2 °C.

A cell pressure of 8 MPa was maintained to ensure that flow takes place through
the sample thus eliminating leakage through the Indiana Limestone
sample-neoprene membrane interface. The cell pressure and the axial stress applied
to the test specimen are provided by a high pressure nitrogen source. Steady flow
through the rock sample is developed using a precision pump, capable of main-
taining flow rates as low as 0.0001 ml/min for periods up to 240 h. The inflow
pressure is measured using an in-line transducer and the outflow pressure in the
flow process is controlled using a back-pressure regulator. A schematic view of the
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experimental arrangements is shown in Fig. 1. Steady flow of CO2-acidized water
at a pH estimated to be between 3 and 4 is maintained through the Indiana
Limestone sample.

As the fluid migrates through the sample the upstream pressure needed to
maintain the flow rate decreases and the time history of the upstream pressure
obtained for six separate experiments is shown in Fig. 2. The reacted Indiana
Limestone samples showed visible signs of defect development at the entry surface
and nominal evidence of defects at the exit surface. To ascertain detailed config-
uration of the defects created within the Indiana Limestone, CT scans were per-
formed on all the samples. Since sandstones constitute the predominant geologic
material associated with storage formations, we also conducted acidized CO2 flow
experiments on Rudna Sandstone. Figure 2 also compares the time history of the
pressure required to maintain acidized CO2 flow through the six Indiana Limestone
and a Rudna Sandstone sample. and Rudna Sandstone samples.

Fig. 1 Experimental facilities for initiating CO2 acidized flow through samples of Indiana
Limestone
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3 Concluding Remarks

Defect generation or development of wormhole-type features in calcium
carbonate-rich rocs can occurs very rapidly. During a 20 h period, all six samples of
Indiana Limestone, irrespective of their initial permeability, developed defects cre-
ating pathways approximately 3 orders of magnitude more permeable than the virgin
Indiana Limestone. The effective permeability of the wormhole can be estimated by
considering a an elementary Poiseuille flowmodel that connects the shortest pathway
through the wormhole, with spatially averaged cross sectional area. A simpler
approach is to conduct a falling head-type permeability experiment where water is
allowed to percolate through the Indiana Limestone sample. The effective perme-
ability values for the wormholes range from 6.93E-13 to 1.71E-12, which are around
three orders of magnitude larger than the permeability of the virgin rock. In these
experiments, the dissolved solids tend to accumulate at the back pressure regulator
incorporated to control flow. In an actual injection setting, it is possible that dissolved
solids emanating from a carbonate-rich zone in a storage formation can result in pore

Fig. 2 Time history of upstream pressure variation during steady flow of CO2-acidized water
through Indiana Limestone and Rudna Sandstone samples (Indiana Limestone used contains
nearly 98.31% calcium carbonate with traces of Silica, Titanium oxide, Alumina and oxides of
Iron, Magnesium, Potassium and Calcium. The porosity from mercury intrusion porosimetry is
approx. 14.4% and from vacuum saturation with water approx. 16%. A chemical analysis of the
sandstone indicted that it consisted of 62.3% quartz, 14.4% dolomite, 14.9% microcline and other
minerals and with a porosity (measured using vacuum saturation) of 2.3%. The deviator stress is
defined as the difference in the maximum principal stress ðσ1Þ and the minimum principal stress
ðσ3Þ applied to the test specimen. In the triaxial testing configuration shown in Fig. 1, the ambient
pressure within the pressurized chamber is σ3 and the axial stress applied to the sample through
piston is the deviator stress ðσ1 − σ3Þ. The deviator stress is a measure of the geostatic stress
difference that can be present within a geologic formation)
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clogging of a predominantly sandstone formation, thus reducing its permeability.
This research also investigates the influence of stresses applied to the skeleton of the
porous medium on the generation of worm holes. For the deviatoric stress states used
in the experiments, there is no appreciable influence of the deviator stress state on the
mode of generation of the wormhole features. Researchers have attempted to model
the process of wormhole formation through carbonate acidization [4]. These studies
indicate the influence of the flow velocity on the development of dissolution fronts.
Processes such as compact dissolution, conical wormholes, dominant wormholes and
ramified wormholes can be influenced by the flow velocities. From the results of CT
scans it would appear that the observations of this research confirm the existence of
the conical variety of wormholes. Here we note that once a wormhole is nucleated,
the acidized dissolution promotes or localizes its growth at the expense of creation of
companion wormholes.
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An Inversion Framework for Numerical
Modelling of Pore Collapse in Soft Porous
Rocks

Jack Lin, Mustafa Sari, Thomas Poulet and Manolis Veveakis

Abstract In this work we present an inversion framework to identify material prop-

erties defining the plastic behaviour of pore collapse modeled by thermo-hydro-

mechanical simulations. This framework is built on the finite element REDBACK

numerical simulator, which is capable of solving a multi-physics problem in a tightly

coupled, massively parallel manner. We demonstrate the approach by matching the

stress-strain response of an Adamswiller sandstone in a drained triaxial experiments.

1 Introduction

Pore collapse has a significant influence in compaction and subsidence of petroleum

reservoirs, which in turn is vital for the lifetime and performance of the energy pro-

ducing formations because of the severe effect on the formation’s porosity [2, 7].

Understanding and simulating the mechanism of pore collapse is therefore essential

to model the performance of a reservoir.

In this contribution we use an energy based approach to model pore collapse with

a pressure-dependant elasto-viscoplastic model [4]. This model uses two material

parameters to determine the plastic behaviour of a rock related to the pore collapse

mechanism, and those values can be extremely difficult to calibrate since all the

parameters are dependent and affect the response of the system in a highly non-linear

manner.

We present a computationally assisted inversion workflow to handle this com-

plex and time-consuming task. We demonstrate the approach by simulating a triaxial

test on an Adamswiller sandstone and identifying the input parameters to match the

stress-strain curve reported by [6].
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2 Theoretical Model Description

The underlying physical model for this paper is based on the principles of over-

stress plasticity [3], used in a novel elasto-viscoplastic approach [4]. Following the

classical considerations of mechanics, the total strain rate is decomposed in an elas-

tic (reversible) part and a plastic (irreversible) part. The reversible component is

assumed to obey a linear thermo-elastic relationship. The irreversible element of the

strain rate obeys an associative visco-plastic flow law of the form �̇�

i
ij = ̇

𝜆

𝜕f
𝜕𝜎

′
ij
, where

f is the yield function and ̇

𝜆 is a (scalar) plastic multiplier (see Fig. 1).

The plastic multiplier follows the relation ̇

𝜆 =
√

�̇�

i 2
d + �̇�

i 2
v . In this expression, �̇�

i
d

and �̇�

i
v are the deviatoric and volumetric parts of the strain rate tensor (see Fig. 1),

respectively, following the incremental relations

�̇�

i
d = �̇�0

⟨
q − qY
𝜎ref

⟩m

exp

(
−
Qd

mech

RT

)
, (1a)

�̇�

i
v = �̇�0

⟨
p′ − pY
𝜎ref

⟩m

exp

(
−
QV

mech

RT

)
, (1b)

where �̇�0 is a reference strain rate, q is the equivalent deviatoric (or von Mises) stress,

p′ is the volumetric mean effective stress, qY and pY are the respective effective

stresses at yield, 𝜎ref is a reference stress, R is the universal gas constant, T is the

temperature field and ⟨⋅⟩ denote the Macaulay brackets.

These expressions imply that the material is admitting thermal sensitivity

expressed through the activation enthalpies for the deviatoric (Qd
mech) and the vol-

umetric (Qv
mech) components. This activation enthalpy incorporates the activation

energies of all the micromechanical mechanisms, like frictional initiation [5] or

volumetric pore collapse. It is in principle expressed in the generalised form Q =
E + PVact whereP is a measure of pressure responsible for driving the internal mech-

Fig. 1 Schematic for the

decomposition of the plastic

flow rule in volumetric and

Deviatoric components. A

point M in the p − q space

(mean effective stress shear

stress) is shown with its

corresponding point MY on

the yield envelope
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anism, while E and Vact are the activation energy and volume of the internal mech-

anism considered (here pore collapse) and are yet to be determined.

Following the recent work of Poulet and Veveakis [4], and assuming isotropic

response of the activation enthalpies (Qd
mech = Qv

mech = Qmech), we introduce the

excess pore pressure as the driving measure of pressure. This yields the following

expression:

Qmech = E + 𝛥pf Vact (2)

In the following sections, we match the experimental data provided by [6] on

Adamswiller sandstone by adjusting the values of E and Vact. To this end, we intro-

duce a swarm particle based inversion workflow based on the finite element numer-

ical simulator REDBACK [4]. For further details on REDBACK (Rock mEchancis

with Dissipative feedBACKs), the reader is referred to [4].

3 Pathfinder: An Inversion Workflow for REDBACK

We have developed an optimisation framework for REDBACK simulations, allowing

us to find parameter values by matching experimental results. In this section we

demonstrate this framework by fitting the values of E and Vact of Eq. 2 to match

on stress-strain curve obtained from the experimental work of [6], in triaxial testing

on Adamswiller sandstone.

This optimization workflow is implemented in a new program called Pathfinder.

The software is based on a mathematical optimization module, coupled to another

module to generate corresponding REDBACK simulation input files, run the sim-

ulations by existing HPC platforms (Leonardi @UNSW) to run large numbers of

REDBACK simulations in parallel and pass the results to the controlling engine (see

Fig. 2). A cost function is computed from each simulation result, expressing the fit

between the numerical and experimental/target results. The controlling engine gen-

erates sets of input values to optimize this cost function. The workflow is initialized

with arbitrary parameter values for E and Vact.

We use a Particle Swarm Optimization (PSO) algorithm as it provides a good

trade-off between ease of implementation, performance, and minimization of the

number of function evaluations. PSO solves for N unknowns by simulating particles

moving through an N-dimensional search space [1]. At each iteration, each particle

evaluates its individual cost function and the overall algorithm monitors the global

best. The positions of all particles are then adjusted by accounting for their current

position, velocity, and the global best.

The core of the algorithm is the custom cost function we need to define, in order

to assess the quality of a match between a set of simulation results and some ref-

erence strain-stress experimental values. Let us define the simulation stress-strain

values as two arrays of the same dimension m: [𝜎
1
sim, ..., 𝜎

m
sim] for the stress values

and [𝜀
1
sim, ..., 𝜀

n
sim] for the strains. The reference (experimental) values are similarly
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Fig. 2 Overall workflow of Pathfinder

Fig. 3 Upper and lower
cut-offs for cost-function

calculation

denoted by [𝜎
1
ref , ..., 𝜎

m
ref ] and [𝜀

1
ref , ..., 𝜀

n
ref ], but for a number n of values. The strain

values for the simulation and reference datasets can potentially be sampled differ-

ently (m ≠ n) but the range of strain values overlap. To compare the two discrete

functions 𝜎sim(𝜀sim) and 𝜎ref (𝜀ref ) we use a cubic spline algorithm to resample both

datasets to a standard grid resolution of (𝛥𝜀 = 0.001) with N points. Furthermore,

the data is truncated to be restricted to the overlapping plastic region of interest,

where the starting point (start of plasticity) is inferred manually (see Fig. 3).
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The computation of the cost function is performed by combining three different

components. Firstly, the Euclidean norm of the difference between the simulated and

target responses is calculated as

Deuc =∥ 𝜎sim − 𝜎ref ∥2=
√∑

(𝜎k
sim − 𝜎

k
ref )2 (3)

Secondly, the angular difference Dang, in gradient, between the slopes 𝛽ref and 𝛽sim
of straight-line fits for both curves is calculated using a linear least-squared method.

Thirdly, the difference of curvatures Dcrv between the two datasets is calculated,

where the degree of curvature is taken as the coefficient (𝜆) of a second-order poly-

nomial, y = 𝛼 + 𝛽x + 𝜆x2. The overall cost is then calculated by combining those

three components

Cost = (Deuc + Dmin
euc ) × (Dang + Dmin

ang) × (Dcrv + Dmin
crv ) (4)

where some numerical coefficients (Dmin
euc = 0.02, Dmin

ang = 0.002, Dmin
crv = 0.01) are

used to ensure minimal (positive) values when any of the three sub-values approach

zero.

Figure 4 shows a plot of the cost function in the E, Vact (normalised as 𝛼2, 𝛼1
respectively in the algorithm) space around the best solution for Adamswiller Sand-

stone undergoing triaxial compression at fixed 100 MPa pore pressure [6]. Results

show a localised zone of better results in that space, with a global minimum of the

cost function for the values (𝛼1 = 3.0, 𝛼2 = 50.5).

Fig. 4 Grid search of cost

function for Adamswiller

Sandstone triaxial, 100 MPa

[6]. Dark colours represent

better fits. Note that

𝛼1 = Vact and 𝛼2 = E
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Fig. 5 Stress-strain curves

for Adamswiller Sandstone

undergoing triaxial

compression at fixed

100 MPa pore pressure [6]

Figure 5 shows the best optimised result, comparing the reference stress-strain

data against a Pathfinder-optimized simulation.

4 Conclusion

We have presented an optimisation workflow based on the REDBACK finite ele-

ment simulator to invert for plastic material parameters from experimental data. This

process allows the identification of the numerical values for the activation energy and

activation volume of the pore collapse mechanism for a given material. The work-

flow was tested against real experiments reported in the literature for Adamswiller

sandstone and matched the numerical values obtained for mudstones by [4].
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Thermo-Hydro-Mechanics in Shear
Fracturing in Geothermal Reservoirs

Manman Hu, Manolis Veveakis, Thomas Poulet and Klaus Regenauer-Lieb

Abstract This paper presents a novel method to investigate shear stimulation at an
injection well in Enhanced Geothermal Systems (EGS). Nowadays, the technique of
EGS has been extensively used for extracting thermal energy from the earth. As the
intrinsic permeability of the rock is usually too low to allow an economic flow, stim-
ulation for fractures is incorporated. The connectivity of fracture networks around
boreholes dominates the system behaviour. In theory, stimulations including both
tensile (mode I) and shear (mode II) fracturing are desired, so that sufficient sur-
face area for heat exchange is produced. However, shear stimulation is considered
a safer choice than tensile fracturing in terms of possibility of inducing local earth-
quakes. This study investigates shear fractures only, from a slip-line field point of
view. The rock is modelled as elasto-viscoplastic material with damage mechanics
coupled. A numerical simulator REDBACK, based on the MOOSE framework, is
employed to solve this coupled multi-physics involved problem.With injection pres-
sure imposed on the interior of a borehole, slip lines grows in the form of logarithmic
spirals, indicating the potential trace of shear fractures. Imperfections are imposed on
the boundary as seeding for the spirals. Cases with and without thermo-mechanical
coupling are compared, indicating the essential role of shear-heating feedback in
enhancing shear fractures. Bifurcation analysis for various Arrhenius numbers is
performed, demonstrating a clear exponential relationship between critical injection
pressure and the local temperature of host rock.
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1 Introduction

Recently, the technique of Enhanced Geothermal System (EGS) has been employed
to unlock thermal energy extraction from low permeability reservoirs. The key is to
increase hydraulic connectivity between a pair of injection and production wells (to
the depth of 1000–3000m), in order to allow an economic flow rate. Shear stimula-
tion plays an important role in generating inter-connected fracture networks around
boreholes. Examples can be found in literatures, including an undergoing Desert-
Peak geothermal field tests in Nevada [1, 2], where formation permeability was
enhanced through shear fracturing, Regular Mud Acid (RMA) assisted stimulation
in a Soultz-sous-Forêts EGS reservoir in France [5], just to mention a few.

Slip-line field is recognized as an effective mathematical technique for solving
plane strain boundary value problem for ideal plasticity. The slip lines are charac-
teristics of the hyperbolic partial differential equations that describe deformation
of an ideal rigid-plastic body. For plane strain von Mises plasticity the slip lines are
orthogonal lines of sinistral and dextral shear [3]. Here we are interested in the plastic
deformation of material around a borehole due to application of an internal pressure
in the well such as by injection. Shear localization occurs along slip lines in the form
of logarithmic spirals, indicating the potential trace of shear fractures.

In this study, we extend the concept of slip lines into an energy domain. A
numerical simulator REDback [6] based on the MOOSE framework is used to solve
the coupled equations and to visualise the growth of logarithmic spirals. Once the
thermal effect is considered, positive shear heating feedback enhances the weaken-
ing/softening of material [4, 7].

2 Problem Formulation

Figure1a shows a schematic for working process of a pair of geothermal wells. We
are interested in how the shear fractures initiate and propagate from the vicinity
of injection borehole, as well as the effect of thermo-mechanical coupling. Hence,
a deep rock layer around the injection point is chosen for investigation, with the
assumption of plane strain condition (εzz = 0). For computational efficiency, a quar-
ter of the region is chosen as a representative. Then, the boundary constraints for
this area can be summarized as follows. Evenly distributed overburden pressure acts
on the exterior boundary, injection fluid pressurizing on the interior boundary, and
zero circumferential displacement is imposed at the two radial boundaries due to
symmetry (as indicated in Fig. 1b).
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Fig. 1 a Schematic for shear stimulation between a pair of wells; b Modelling of an injection
borehole in a deep rock layer, in plane strain condition

3 Methodology

3.1 Visco-Plasticity Formulation

In the numerical implementation of REDBACK, the irreversible part of the strain
rate obeys an associative visco-plastic flow law of the form

ε̇ii j = λ̇
∂ f

∂σ ′
i j

, (1)

where f is the yield function and λ̇ is a (scalar) plastic multiplier representing the
magnitude of irreversible strain rate:

λ̇ =
√

ε̇i 2d + ε̇i 2v . (2)

where ε̇i 2d and ε̇i 2v are the deviatoric and volumetric components of the strain rate
tensor respectively, following the incremental power-law relationship:

ε̇id = ε̇0

〈
q − qY
σre f

〉m
exp

(
−Qd

mech

RT

)
, (3a)

ε̇iv = ε̇0

〈
p′ − pY

σre f

〉m
exp

(
−QV

mech

RT

)
, (3b)

where ε̇0 is a reference strain rate, q is the equivalent deviatoric (or von Mises)
stress, p′ is the volumetric mean effective stress, qY and pY are the respective effec-
tive stresses at yield, Notably, this visco-plasticity model can also be derived from
the creeping flow law that describes rate-and state frictional rheology by Taylor
expansion at the limit of yield stress [8].
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3.2 Governing Equations

Neglecting body force, the stress equilibrium is written as

∂ jσ
′
i j − ∂iΔp f = 0 (4)

Energy balance gives
∂t T − ∂2

i i T − Gr σi j ε̇
pl
i j = 0 (5)

where the plastic strain rate ε̇
pl
i j can be obtained from Eq.1 to Eq.3. The damage

evolution law is described as

Ḋ = βdamage(
q

1 − D
)n (6)

and accordingly, σY = σY0 (1 − D), E = E0 (1 − D), where D denotes the damage
variable, βdamage denoting a material constant, q denoting the deviatoric stress. The
exponentn can be related to the dislocation power law [4].Note that damage evolution
is null in the absence of initial damage.

Considering the convenience for numerical implementation, all the variables
involved in the multi-physics based processes are normalized:

t� = cth
L2
re f

t, x� = x

Lre f
, T � = T − Tref

δTre f
, Δp� = Δp f

σre f
, σ �

i j = σi j

σre f
, (7)

where cth is thermal diffusivity, and Lre f , Tref and σre f are normalization constants
for length, temperature and stress, respectively.

4 Simulation Results

In order to observe virtually the growth of logarithmic spirals, imperfections are
imposed on the interior boundary as seeding. 16 evenly spaced small defects are
imposed at the borehole wall, as an ongoing investigation (outside the scope of
this paper) demonstrates that it corresponds to the natural selection of wavelength.
Figure2 shows the comparison between plastic radial strain (as a representative for
irriversible deformation) patterns at t� = 0.125without andwith considering thermal
effects. The same difference can also be observed in the energy dissipation pattern
(Fig. 3), as the shear-heating feedback accelerates the shear banding/localization.

Figure4 shows the evolution of the critical ratio ( σin
σout

)
cr
against various Arrhenius

numbers with damage patterns juxtaposed. Clear shear-banding appears with σin
σout

beyond the critical value, while smaller value of σin
σout

prevents shear localization.
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Fig. 2 Shear banding in plastic strain pattern, without and with thermo-mechanical coupling.

Fig. 3 Shear bands observed in mechanical dissipation pattern, without and with thermo-
mechanical coupling.

The concentrated damage implies high porosity in shear bands, indicating effective
pathways generated for fluid flow.

By assuming the overburden pressure on the outer boundary constant, this fit-
ting gives an exponential relationship between the critical injection stress and the
Arrhenius number (Ar = Qmech/R Tref ):

σin

σout
� 2.78 ∗ exp(−0.15 Ar) (8)

that is
σin

σout
� 2.78 ∗ exp(−0.15

Qmech

R Tre f
) (9)



www.manaraa.com

332 M. Hu et al.

Fig. 4 Critical bifurcation stress as an exponential function of Arrhenius number, with damage
patterns juxtaposed. Lucid shear-banding observed above the curve indicating potential flow paths

As usually we set the local rock temperature as the reference temperature, Eq. 9
demonstrates that critical injection pressure required to induce shear fracturing
depends exponentially on the local temperature of host rock.

5 Conclusion

A novel method of investigating shear stimulation at an injection well in Enhanced
Geothermal Systems (EGS) is presented, from a slip-line field point of view. The
main conclusions include: (i) Purefluid pressure acting onboreholewalls canprovoke
shear failure; (ii) Thermo-mechanical feedback accelerates the propagation of shear
bands; (iii) Bifurcation stress is dependent on the Arrhenius number, and thus is
affected by host rock temperature.
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Modelling of the Progressive Failure
in a Wellbore Multilateral Junction
with Cosserat Model

Panos Papanastasiou

Abstract We employed a higher order continuum based on Mohr-Coulomb Cos-
serat elastoplasticity in a non-linear finite element analysis capable of modelling the
localization of deformation in shear bands that leads to failure near underground
openings. The model is used to investigate the stability of wellbore multilateral
junctions. The obtained results show a progressive failure mechanism and the
computed failure modes are in a good qualitative agreement with laboratory
observations. We found that the multilateral junction of a lateral wellbore drilled to
the direction parallel to the maximum insitu stress is more stable than in the case of a
lateral wellbore drilled to the direction perpendicular to the maximum insitu stress.

Keywords Multilateral junction ⋅ Localization ⋅ Cosserat ⋅ Shear bands ⋅
Breakouts

1 Introduction

Drilling horizontal wells through producing reservoir layers can improve signifi-
cantly the reservoir drainage and hydrocarbon recovery. The horizontal sections are
accessed through multiple inclined wells drilled from a relatively small area in
different directions, something that allows better exploitation of stationary offshore
platforms and land rigs that are under economic and environmental restrictions.
Drilling inclined and horizontal well intervals, though, is more difficult and more
expensive, due to wellbore instabilities. A particular area of concern is the integrity
of the rock near a multilateral (M-L) junction (Fig. 1). The junction is the region
where a second wellbore (lateral) takes off from the main wellbore (parent). In the
simplest case of M-L, classified as levels 1 and 2, the rock at the junction is not
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supported mechanically with cemented casing, so the integrity of the rock around
the area of two intersecting holes becomes very important in terms of stability.

In other related work, Aadnoy and Edland [1] considered the stability of two
adjacent holes using an analytical solution. This solution is valid for parallel holes
embedded in an isotropic stress field. Willson et al. [8], used a 3-D FEM elasto-
plastic analysis for assessing the stability of multilateral junctions. Papanastasiou
et al. [7] studied the stability of multilateral junctions in a combined experimental
and numerical modeling program. The experiments were carried out at Lille
University in a true triaxial machine on large size cubical blocks (40 cm) of weak
triassic sandstone with two holes intersecting. The experimental results were pre-
sented and compared with numerical results obtained with classic finite element
analysis developed for engineering assessment of the integrity of rock surrounding
a multilateral junction.

Objective of this study is to determine more accurately the failure mechanism at
the multilateral junction in relation to the direction that a lateral wellbore branches
off. We note that classic elastoplastic stress analyses determines the stress con-
centration and the yielded zones but is unable to determine the exact failed area. For
this reason we use here a higher order continuum with microstructure that can
regularize the ill-posed mathematical problem of strain-softening material. This
model enables the modelling of progressive localization of deformation in zones of
intense shearing that lead to failure of geomaterials and underground structures. The
model is based on a Cosserat plasticity model which in addition to the translational
degrees of freedom of the classical continuum possesses independent rotation as
well. The independent rotation introduces in the model curvatures and coupled
stresses. The non-linear finite element analysis is carried out in planes perpendicular
to the parent-hole axis (Fig. 1). We do not expect large deviations from a 3-D
analysis as long as the build angle of the lateral is small, which is normally the case
in the field. Studies on localization of deformation that leads to wellbore breakouts
near a single hole were presented earlier by Papanastasiou and Vardoulakis [4],
Zervos et al. [9], Papanastasiou and Zervos [6] and Papamichos [3].

3 12

A---------------- A’

Fig. 1 Wellbore multilateral junction (left) and finite element mesh of cross-section A-A’ (right)
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2 Cosserat Flow Theory of Plasticity

The results were obtained using finite element analysis with an advanced Cosserat
plasticity model and a robust failure criterion based on localization of deformation
in shear bands. Details on the used Cosserat plasticity model and finite element
implementation can be found in Papanastasiou and Vardoulakis [4].

As in the classical flow theory of plasticity, plastic strains are generated when the
yield condition is satisfied. The Mohr–Coulomb yield criterion can be written as

F =
τ

p0 + p
− μ=0 ð1Þ

where the material parameters are the mobilized friction coefficient μ and the
intercept p0 of the yield surface with the p-axis which is related to the material
cohesion, p0 = c/tanφ. In Eq. (1) p and τ are invariant measures of average normal
and shear contact tractions over the periphery of a macrocell of the “static” Cosserat
model medium given in Muhlhaus and Vardoulakis [2]

p=
σkk
2

τ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3sijsij − sijsji
� �

̸4+mimi ̸R2
q

ð2Þ

where sij is the deviatoric stress, sij = σij + pδij. The internal length R can be
identified as an equivalent radius of a typical grain or assembly of grains.

In a friction hardening/softening plasticity model we assumed that the friction
coefficient μ is a function of a plastic hardening parameter, μ = μ(γp) and the
intercept p0 of the yield surface with the p-axis is a material constant. Hardening is
taking place when μ is monotonously increasing and softening when μ is mono-
tonously decreasing with increasing γp. The hardening parameter is defined as the
integral over the entire loading history of the increment of the generalized plastic
shear strain.

dγp =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3dεpijε
p
ij + εpijε

p
ji

� �

̸2+R2dκpi dκ
p
i

r

ð3Þ

where dεijp is the deviator of the plastic relative deformation. The plastic shear-strain
increment, dγp, is defined so that it is energy conjugate to the generalized shear
stress intensity τ in Eq. (2). When the couple stresses mi and curvatures dki

p vanish,
the definitions of τ and dγp in Eqs. (2) and (3) coincide with those of the classical
plasticity. The actual value of dγp is determined from Prager’s consistency condi-
tion, F = 0 and dF = 0. The plastic strain dεijp is generated from the flow rule which
is assumed to be associative. In the most general case geomaterials obey a
non-associated flow rule.
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3 Material Parameters

The material parameters for the Mohr–Coulomb elastoplastic constitutive model
were derived from triaxial compression tests on Castlegate sandstone and a cali-
bration procedure. The elastic parameters were found to be E = 8,100 MPa and
v = 0.35. The parameter related to the material cohesion is p0 = 9.81 MPa. The
calibration of the friction coefficient, μ = sinφm as a function of the plastic shearing
strain γp was based on interpolation of pre-peak triaxial data. Post-peak softening
behavior was modeled by an additional constant c0 which controls the rate of
softening. The corresponding curve-fit was given by the hyperbolic function

μ= μ0 +
1− c0γpð Þγp
c1 + c2γp

ð4Þ

where μ0 = 463 is the value of the friction coefficient that defines the state of initial
yield; c1 = 0.0077, c2 = 7.5 and c0 = 12 is a control parameter of the rate of
softening. The dilation coefficient β = sinψm = μ was taken equal to the friction
coefficient μ because the Castlegate sandstone exhibits pronounced dilation.

The internal length required by the Cosserat model is set equal to R = 0.2 mm.
This value is related to the microstructure of the sandstone, e.g., the grain size. We
emphasize here that the inclusion of the grain size in the constitutive equations
provides the Cosserat model with the capability to predict the scale effect.

4 Results and Discussion

Figure 1 (right) shows the mesh used in the analysis. In Fig. 2 we compare the
applied load vs deformation at different points around the holes, shown in Fig. 1,
for the case of the maximum stress applied in the vertical direction (solid lines) and
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Fig. 2 Load versus
displacement curves for
points shown in Fig. 1. Solid
lines are for maximum stress
perpendicular to long axis and
dashed lines are for maximum
stress parallel to the long axis
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the case of the maximum stress applied in the horizontal direction (dashed lines). It
is clear from the peak loads that the M-L junction will be more stable if the lateral
hole was drilled in the direction parallel to the maximum horizontal stress. It is
worth looking at the failure mechanism at peak loads in both cases. When the
maximum load was applied perpendicular to the long axis the failure mechanism
consists of breakouts around the holes in the direction parallel to the maximum
applied stress, as in the case of a single hole (Fig. 3). In the case of the maximum
stress acting parallel to the long axis, localization of deformation initiates parallel to
the maximum stress at positions on both parent and lateral holes. The formed shear
bands propagate progressively to meet each other resulting in the failure mechanism
shown in Fig. 4.

After the formation of the first breakouts in Fig. 3 the hole shape will become
more elliptical with the long axis parallel to the minimum insitu stress where as in
the case of Fig. 4 the hole shape will become more circular. It has been shown by
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Fig. 3 Failure mechanism for the maximum stress acting in the vertical direction a incremental
displacement field (left) and b shear plastic strain (right)
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Fig. 4 Failure mechanism for the maximum stress acting in the horizontal direction a incremental
displacement field (left) and b shear plastic strain (right)
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Papanastasiou [5] that an elliptical hole with the long axis parallel to the maximum
insitu stress is more stable than a circular hole which is more stable than an elliptical
hole with the maximum stress perpendicular to the long axis. Therefore, one can
conclude that a lateral hole drilled on the side of the parent hole parallel to the
maximum insitu stress will be more stable in the entire loading history.

5 Conclusions

In this study we presented results on the failure near a wellbore multilateral junction
obtained with a Mohr-Coulomb Cosserat plasticity model that is capable of mod-
elling the progressive shear bands that lead to wellbore breakouts. We found that
the direction of a more stable lateral is parallel to the maximum horizontal insitu
stress. This finding is consistent with earlier work on elliptical perforations [5]. In
all cases alignment of the hole long axis parallel to the maximum compressive
stress delays the failure to higher applied load.
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Simulating Enhanced Production
in Fractured Formations Using Dual
Porosity Model with a Simplified Finite
Element Algorithm

Yarlong Wang, Fotios E. Karaoulanis, Xinzhe Zhao and Xiang Li

Abstract Simulating the production process in natural fractured formations can be

performed by the well-known dual-porosity model. Factors related to geomechan-

ics can be crucial for production as both the deformation of the formation and the

locally induced stresses can contribute to the pressure changes significantly, par-

ticularly in low-permeability and tight formations. A fully coupled, dual-porosity

reservoir geomechanics model is developed and presented in this article, focusing

on the computational efficiency, without however sacrificing accuracy. In the pro-

posed model, displacements, the saturation and the two system pressures (matrix/

fracture) are considered the primary variables and the system is solved in an itera-

tive manner, following a fully coupled approach for the displacements and one of the

system pressures, so that the overall problem dimensions to be reduced from four to

two. Calculated stresses, pressures and production rates are analyzed and implica-

tions to hydraulic fracturing and stimulated reservoir volume (SRV) calculations are

discussed and addressed.

1 Introduction

Flow and pressure changes in fractured formations are key issues in hydrogeology,

geothermal and petroleum engineering [9]. Dual-porosity and permeability mod-

els are used to simulate pressure and stresses changes in the matrix and fractured
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system, respectively. One of the most important issues in the fracture-matrix sys-

tem is the geomechanics effects on the flow [2, 6]. The focus here is on how can

we quantify the permeability change under the induced stresses and the volumet-

ric deformations coupled to the mass balance in each system [3]. On one hand, the

deformation and stress changes follow different laws in the different systems. On the

other hand, induced stresses control the permeability change, which can dominate

both flow and stresses change at the same time [1].

In this study, a general dual-porosity and permeability model is developed and a

simplified numerical algorithm is proposed and implemented to calculate pressures,

stresses and flow rates near a wellbore and a fracture. Stresses and flow inside the

two systems (fracture and matrix) are calculated and analyzed.

Our objectives are to study the pressure and the effective stresses changes between

these two systems so that we can later analyze the wellbore stability, sanding prob-

lems and hydraulic fracture designs.

A procedure for simulating and solving a problem as such is proposed in this arti-

cle. First of all we assume the permeability is insensitive to the stress, the saturation

and the interporosity transfer coefficient remain unchanged. Commonly, the perme-

ability is defined as a function of the confining stress, which is in the principal stress

direction. In our formulation we define the permeability as a function of the nor-

mal stress to the principal flow direction, which is dictated by the natural fractures

and the geological bedding. Furthermore, if plasticity and dilatancy occur, the shear

component of the stress tensor should be also used. Secondly saturation is related to

the relative permeability, which is sensitive to the capillary pressure and the defor-

mation. Thirdly, the interporosity coefficient is typically defined as a combination of

fracture network parameters and quasi-static pressure differences.

2 Fundamental Study on Reservoirs and Numerical Model
Development

A general constitutive relationship for an extended Darcys law with a dual-porosity

and dual-permeability system is developed in the following. The equilibrium, the

mass balance, the momentum and the kinematic equations are defined as (see also

[4, 8]):

𝜎ij,j = 0 (1)

∇ ⋅ (𝜌mSnm𝜙𝝂n) +
𝜕(Snm𝜌m𝜙n)

𝜕t
+ (−1)n𝜌m𝛤 = 0 (2)

Snm𝜙n(𝝂n − 𝝂s) = −
krmkn
𝜇

∇pn (3)

∇ ⋅ (𝜌s(1 − 𝜙t)𝝂s) +
𝜕[𝜌s(1 − 𝜙t)]

𝜕t
, 𝜙t = 𝜙1 + 𝜙2 (4)
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𝜎ij = 2G𝜀ij +
2G𝜈
1 − 2𝜈

𝜀kk𝛿ij
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝜎
′
ij

−(a1p1 + a2p2)𝛿ij, 𝜀ij =
1
2

(
𝜕ui
𝜕xj

+
𝜕uj
𝜕xi

)
(5)

𝛼1 =
𝛼
∗c∗b
cb

, 𝛼2 = 𝛼 − 𝛼1, 𝛼
∗ = 1 −

c∗s
c∗b
, 𝛼 = 1 −

cs
cb

(6)

In the above n = 1 (matrix) or 2 (fracture) and m = w (wetting) or o (non-wetting,

oil). Furthermore star (
∗
) refers to the single porosity problem. The above equations

define a 4 × 4 coupled system for u, p1 (matrix), p2 (fracture) and saturation S, by

dropping into the equilibrium Eq. (1) and into the mass balance for the fluid phases

(2), the rest of the equations. The solution approach can be simplified, by solving the

pressure and the displacement equations in the matrix first, assuming the pressures

in the fracture system as known and solving explicitly the saturation equation. Then

go back to the rest of the system’s equations in an iterative way and solve it in a fully

coupled form. This way, reliable, single phase solvers can be employed to solve the

reduced system.

3 Numerical Simulations, Results, Field Example
and Implications

A numerical example is examined next, based on the data found in [5], as summa-

rized in Table 1.

Pore pressures changes in both the fractured and matrix systems are displayed

and compared in Fig. 1. In general a flat pressure gradient can be generated in the

system where a higher permeability exists as expected. The effective stresses in this

higher permeability system can be smaller than that with a lower permeability. This

indicates that the pore pressure coupling effect due to the volumetric strain in the

fractured system can be weakened by a lower effective stresses, even though an over-

all effective stress is defined.

Table 1 Simulation data

Property Value Property Value (MPa)

Young’s modulus (E) 35 GPa In situ stresses 𝜎x = 𝜎y = 𝜎z 30

Poisson ratio (𝜈) 0.2 Bottomhole pressure 4

Matrix permeability (k1) 1 mD Initial pore pressure 5

Fracture permeability (k2) 1000 mD Drawdown pressure 1

Matrix porosity (𝜙1) 0.1

Fracture porosity (𝜙2) 0.01
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Fig. 1 Pressures for both systems on early stage of production (top) and their evolution through

time at different distances from the well (bottom)

Fig. 2 Fluxes over time for different permeabilities

The fluxes by the two systems are compared and displayed in Fig. 2. Depending

on the difference in permeability, the flow rate contribution by the fractured system

can be reduced when stress-sensitive effect dominates the permeability change.
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Fig. 3 Extreme effective stresses near the borehole (no support conditions)

The worst case scenario of stress distributions near the well is shown in Fig. 3.

Stresses in an elastic, poroelastic and that in a coupled fracture-matrix system can

be significantly different from each other, implying a wellbore stability, flow and

fracturing processes must be understood, simulated and designed differently.

3.1 Pressure and Stresses Distribution Near a Borehole
and Fracture

At a given time, pore pressure gradient normally can dissipate rapidly near a borehole

and a fracture in a high-permeability formations. Thus, the pore pressure in these for-

mations such as along the fractures can transmit farther away from the borehole and

fracture, leading to a low effective stress region. This suggests that a stress pertur-

bation can be more significant in a poroelastic and fractured media which may be

favorable for SRV and enhanced permeability change. Such an effect can be further

enhanced by a permeability change near the borehole or fracture when a low effective

stress region is created.

3.2 Boosting Production by Increasing Reservoir Pressure

For stress-sensitive reservoirs, enhancing production by increasing drawdown can

defeat the purpose if not applied carefully. One must examine the sensitivity of the

formation, either by maintaining the minimum flowing pressure or lifting the far-

field pressure in order to keep a significant drawdown. A preliminary simulation by

lifting far-field pressure in a dual porosity environment indicates that the sweeping

ratio and arrival time for the driving pressure front are the keys for such a strategy

to be effective. A typical study on stress sensitivity formations can be found in [7].

Further studies are required and will be conducted elsewhere.
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4 Conclusions

A simplified numerical procedure is implemented in this article. A 4 × 4 system of

equations can be reduced into 2 × 2 and an efficient coupled solver can be used to

simulate a fully coupled two phase dual porosity model, in which the geomechanics

coupling is rigorously defined. The effective stresses and pore pressure near a well-

bore are critical for production and hydraulic fracturing process, during production

enhancement in fractured reservoir stimulation.
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Hierarchical Multiscale Modeling of Strain
Localization in Granular Materials:
A Condensed Overview and Perspectives

Jidong Zhao

Abstract This paper presents a brief overview on hierarchical multiscale modeling
(HMM) of granular media and its application in simulating and understanding the
phenomenon of strain localization. The general principles, solution procedures and
advantages of existing HMM approaches are reviewed and compared. Focuses are
devoted to the new cross-scale findings and insights offered by recent HMM studies
on identification of key micro-structural origins and micro-mechanisms underpin-
ning different deformations bands in granular materials. Limitations, challenges and
opportunities pertaining to multiscale modeling of granular media are discussed.

1 Introduction

Multiscale modeling tops the trending words across many disciplines of engineering
and science for over two decades, and has become a focal topic of interest in the
study of granular materials recently. Granular media represent a wide range of
materials that are of tremendous importance for many branches of engineering and
industry, including cohesion-less sand, unconsolidated rocks, crushed coal, agri-
cultural grains and chemical powders. Our fundamental understanding on the
behavior of granular media, especially their mechanical behavior such as strength,
stiffness and localized deformation patterns, has been largely built upon phe-
nomenological characterizations, empirical descriptions and continuum-based
modeling. While these traditional approaches have gained certain success in
helping us meet the primary needs on design and operation of engineering prob-
lems, there are numerous occasions where the multiscale nature of granular media
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has to be rigorously taken into account in order to attain accurate, comprehensive
understanding, strain localization being a representative one of them.

There has been compelling recent experimental evidence, especially from test
data based on advanced modern facilities such as X-ray micro computerized
tomography (X-ray micro CT) and Digital Imaging Correlation (DVC), indicting
that the initiation, formation, (sometimes) transition and finalization of strain
localization bear intimate correlations with intricate microstructural mechanisms
and controlling factors originated from the grain scale of a granular material [1–5,
14]. The corresponding theoretical and computational developments on this subject
have apparently lagged behind their experimental counterpart. There has been a
strong urge for the development of next-generation modeling and analysis tools,
which, if ideally available, may not only retain the robustness and rigor of con-
ventional continuum-based approaches in dealing with practical boundary value
problems while voiding being phenomenological, but also incorporate fully the
grain-scale granular mechanics showcased by prevailing micromechanics approa-
ches and experimental observations. A special class of multiscale modeling
methods, namely, the Hierarchical Multiscale Modeling (HMM) approaches, has
been developed recently to take a step forward towards this direction. This paper
serves as a condensed review of the latest advance of the HMM methods, with an
emphasis placed on their unique roles in helping us gain new cross-scale under-
standing of strain localization in granular media.

2 Hierarchical Multiscale Modeling (HMM) of Granular
Media

2.1 Principle and Methodology

Principle: The concept of HMM typically exploit a hierarchical discrete-continuum
coupling scheme to solve a boundary value problem for granular media (see e.g.,
[8]). In the HMM framework, a continuum approach (e.g., FEM) is employed to
discretize the concerned domain and find its solution subjected to the prescribed
boundary conditions according to similar ways as conventional continuum
approaches. It departs from conventional ways in that a HMM approach does not
require a constitutive model to be assumed at the material point of the continuum
domain. Rather, the constitutive relations are derived from the solution of a
discrete-particle assembly of Representative Volume Element (RVE) attached to
each material point of the continuum domain whereby the RVE receives defor-
mations and other state variables as boundary condition from the macro scale and is
solved by a discrete-based method (e.g., DEM). In essence, the HMM retains the
robustness and flexibility of FEM in handling BVPs (which is a pitfall for DEM),
while avoid assuming phenomenological constitutive models as required by con-
ventional continuum approaches. Meanwhile, it fully capitalises the strength of
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discrete-based methods in reproducing the highly nonlinear, path-dependent
mechanical behavior of a granular material. Moreover, the hierarchical structure
offers a direct pathway to link the macro observations with their underpinning
microstructural mechanisms, a feature highly desirable for multiscale understanding
of strain localization in granular media.

Methodology: A dominant majority of existing HMM approaches for granular
media have employed FEM to solve the continuum boundary value problem, and
DEM for the solution of the boundary value problem of the particle assembly [3, 6,
8, 9, 17, 18, 21–25], Nitka et al. [23] and Liu et al. [20]. Figure 1a demonstrates a
typical flowchart for the sequential iterative macro-micro solution procedure of
HMM of dry granular media based on a hierarchical FEM-DEM coupling [8]. Since
the DEM computation for each RVE is independent, the HMM approach can fully
adopt parallel computing techniques for each RVE in the macro domain to enhance
the computational efficiency. In existing HMM studies, the DEM commonly uses
deformable particles of either spherical or elliptical shapes with linear or nonlinear
contact and friction laws governing their contacts. Only exception is the study by
Kaneko et al. [16] where the called Granular Element Method (GEM) based on
rigid, frictional circular disks was adopted for the RVE solution. Notably, while
most of the studies have been formulated under 2D conditions for the sake of
simplicity, [9] and Liu et al. [20] have presented 3D HMM formulations and
demonstrative examples.

Global-local solution schemes: In deriving the global-local solutions of the
HMM approach, the implicit Newton-Raphson (NR) solution scheme with
sequential macro-micro iterations has been commonly adopted to solve the non-
linear problems for granular media [8, 21]. In particular, Meier et al. [21] used the
elastic modulus as the tangent operator for frictionless particles based on Taylor’s
assumption. Note that the Taylor’s assumption may potentially render the material
response unrealistically stiffer and less dissipative. Guo and Zhao [8] found that the
use of a secant elastic modulus for general granular particles (with friction) could
work efficiently and robustly, noting that the perturbation method as advised in
Nitka et al. [23] could cause issues of potential non-convergence and relatively low
computational efficiency. Shahin et al. [25] suggested that a modified
Newton-Raphson approach could be more robust when the quadratic convergence
of a NR scheme was lost. Liu et al. [20] have recently proposed an explicit solution
procedure for HMM which was claimed to be more efficient than the implicit
iterative procedures aforementioned.

2.2 Selection and Benchmark of RVE for HMM

The selection of proper Representative Volume Element (RVE) is critical to the
HMM approaches in two-fold. First, a proper RVE should faithfully represent the
typical material behavior of the simulated granular material observed in the lab.
Indeed, a RVE can be considered a virtual specimen equivalent to that used in a

Hierarchical Multiscale Modeling … 351



www.manaraa.com

typical laboratory element tests. Second, the selection of a RVE should make it
computationally affordable as its DEM solution constitutes a typical HMM may
involve hundreds of thousand RVE to be computed at each loading step. While
constitutive features governing the DEM including contact models and geometry of
particles have been extensively discussed in the DEM community, the most critical
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Fig. 1 Illustration of Hierarchical Multiscale Modeling of granular media with FEM ×DEM
coupling. a HMM of Dry granular media: FEM discretizes the macroscale BVP and passes the
deformation gradients as boundary conditions for the meso-scale RVE modeled by DEM. The
deformed RVE returns tangent operators and stresses for FEM to advance its global solution [8].
b HMM of saturated granular media: The FEM solves the BVP based on u-p formulation. It
passes the deformation gradients and prescribes pore water pressure on the RVE. The DEN
solution of the RVE returns the effective stress based on Terzaghi’s principle of effective stress, the
tangent operator and an updated value for the pore water pressure to FEM for iterative global
solution [9]
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issue regarding HMM computation boils down to the number of particles to be
included in a typical RVE. For 2D case, a size of RVE with a few hundred particles
appears to be widely agreed by most study to offer good predictions of material
behavior with reasonable computational efficiency. For example, Kaneko et al. [16]
examined 16 different RVE size (2D) and aspect ratio in terms of their fabric isotropy
and concluded that 200 particles would make an acceptable RVE for their multiscale
approach. Meier et al. [21] examined the contact normal density function and
average Cauchy stress of RVEs containing particle numbers from 70350 to 700 and
concluded that the 700-particle RVE could offer reasonable results for 2D simula-
tions. Guo and Zhao [8] and Nguyen et al. [24] both recommended 400 particles
would serve a balanced choice for HMM of 2D problems. For 3D case, Guo and
Zhao [11] suggested that a RVE with 1000 particles would be a reasonable unit cell
for HMM simulations, while the number suggested Liu et al. [20] was 4000. Note
that Shahin et al. [25] have more recently examined the effects of inhomogeneity and
imperfection in a RVE on the prediction of strain localization in biaxial compression
test simulations. In the future, if faster, more advanced parallel computing facilities
can be inexpensively accessible, the number of particles considered in a RVE may be
reasonably increased to yield more representative material responses.

Equally important is the benchmarking of the chosen RVE to ensure its pre-
diction is valid and representative of typical granular responses. Guo and Zhao [8]
and Liu et al. [20] compared the single-scale RVE response with the Gauss point
response of HMM single element tests under either biaxial compression or simple
shear to benchmark their methods. Note that Guo and Zhao [10] and Guo et al. [12]
further employed their HMM approach and investigated some classic geomechanics
problems, including retaining wall, footing and cavity expansion in thick-walled
hollow cylinder.

2.3 Hydro-Mechanical Coupling for Saturated
Granular Media

The presence of pore fluids in a porous, saturated granular medium may lead to
strong hydro-mechanical coupling effects underpinning many aspects of its engi-
neering performance. Micromechanics-based approaches for direct modeling of
particle-fluid interactions, such as those based on DEM-CFD (Computational Fluid
Dynamics) or DEM-LBM (Lattice Boltzmann Method) coupling, are too expensive
to be affordably paired with HMM approaches to solve a practical problem.
Moreover, these approaches commonly require complicated considerations and
treatments of moving boundaries at the interface offluid and particles. Guo and Zhao
[9, 13] recently proposed adapting the fixed-stress split method with the seminal u-
p formulation to solve the global governing equations in the HMM, and exploiting
the classic Terzaghi’s effective stress principle to derive effective stress from the
RVE. Wang and Sun [26] presented a similar method. The stress tensor homoge-
nized from a typical DEM assembly according to Love’s formula is based on the
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interparticle contact forces of the soil particles. It is hence a clear measure of the
effective stress as defined by Carl Terzaghi. This micro-scale based effective stress
added by the macro pore water pressure (as an unknown) makes up the total stress in
the global equilibrium equation. Therefore, the entire hydro-mechanical coupling
problem can be solved in the HMM framework efficiently and robustly, without
resorting to expensive micromechanically based coupling. The entire solution pro-
cedure can be readily adapted from the one proposed for dry granular media by Guo
and Zhao [8]. As illustrated in Fig. 1b, the pore water pressure is passed down to the
RVE as an additional prescribed boundary condition on its calculation, before being
updated and passed up to the macro material point again together with the
homogenized effective stress and tangent stiffness matrix, and an updated perme-
ability based on new void ratio and fabric structure of the RVE. All the rest of the
solution procedure remains the same as in the dry case. Guo and Zhao [9, 13]
benchmarked their coupled hydro-mechanical HMM approach with classic Terza-
ghi’s 1D consolidation problem and the 2D consolidation under a strip footing, while
Wang and Sun [26] verified their formulation on 1D consolidation problem.

2.4 Non-conventional Continuum Enrichment
and Finite Strain

To resolve mesh-dependency issue and to capture size effects, Li et al. [18] presented
a micro-macro homogenization method for Cosserat continuum, and Li et al. [17]
further developed a mixed FEM of gradient Cosserat continuum with second-order
computational homogenization for granular media based on Hu-Washizu variational
principle. Liu et al. [20] developed a coupled FEM and DEM nonlocal multiscale
method wherein the macro finite element solution was based on a nonlocal strain
formulation. Finite strains were considered by Miehe et al. [22] and Liu et al. [20].
A side note on finite strain is made here. When the stress is homogenized from a
RVE from interparticle contact forces, both translation and rotation of all particles of
the entire RVE are totally considered. Consequently, the attained stress tensor may
have already included contributions of co-rotational terms for the assembly (e.g.,
according to the manner of Jaumann stress rate). Therefore, it appears that the
general HMM formulation (e.g., [8]) may well consider finite strain case already.

3 Multiscale Modeling of Strain Localization in Granular
Media

The various HMM approaches have been applied to simulating strain localization in
granular media. Biaxial compression tests have been a popular example in most of
these HMM studies (see, e.g., [3, 8, 9, 13, 16, 22, 23]). Strain localization in 3D
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problems such as triaxial compression and extension on cubic and cylindrical
samples have also been investigated by HMM approaches [11, 26]. The following
provides a brief summary of major new cross-scale findings pertaining to strain
localization revealed by the various HMM studies.

3.1 Alternative Localization Indicators

Cumulative deviatoric and void ratio have long been considered good indicators for
localized shear bands in granular media. In addition, Zhao and Guo [28] found that
cumulative particle rotation extracted from their HMM simulations can be an
equally good localization too (see Fig. 2a, b, d. Meanwhile, both Guo and Zhao [8]
and Zhao and Guo [28] demonstrated that the localized pattern for the intensity of
fabric anisotropy defined by interparticle contact-normals was not consistent with
the accumulated deviatoric strain, and suggested that the contact-normal-based
fabric anisotropy was as good as an indicator for strain localization in granular
media (c.f. Figure 2e with the rest figures). However, Zhao and Guo [28] employed
clumped particles in RVE and showed that the intensity distribution of
particle-orientation-based fabric anisotropy was highly consistent with that of
deviator strain, and hence can be used as a localization indicator (see, Fig. 2c).

3.2 2D Versus 3D Loading Conditions

Guo and Zhao [11] employed 3D HMM approach to predict the occurrence of
granular media subjected to 3D loading conditions. The multiscale modeling
concluded that localized shear failure could be easier to occur under plane-strain
conditions, and triaxial extension conditions could prohibit deformation localization
and lead to diffuse failure mode instead. Indeed, as summarized in Fig. 3, their
multiscale modeling indicates a cylindrical sample may tend to undergo bulging

Fig. 2 Localization patterns predicted by HMM simulations of biaxial shear tests (Zhao and Guo
[28]), in terms of a cumulative deviatoric strain, b void ratio, c intensity of
particle-orientation-based fabric anisotropy, d cumulative particle rotation and e intensity of
contact-normal-based fabric anisotropy
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failure under triaxial compression (Fig. 3a) but fail diffusively under triaxial
extension condition (Fig. 3b), whilst a cubic specimen is prone to develop
octopus-shaped localizations under triaxial compression condition Fig. 3d and cross
planar shear bands under plane-strain biaxial compression Fig. 3c, while it fails in
diffuse mode under triaxial extension Fig. 3e. The 3D HMM simulations also
showed that, if shear banding occurs, the shear band angle (relative to the minor
principal stress direction) decreases from CTC, to PBC and further to CTE loading
conditions (or equivalently with the increase of intermediate principal stress ratio).
These findings are indeed consistent with experimental observations (e.g., [15]).

3.3 Pore Water Pressure Dissipation and Shear Banding

Guo and Zhao [9] employed a hydro-mechanical coupling HMM formulation to
simulate a globally undrained biaxial compression test on saturated dense sand.
A striking finding is as follows: (a) An obvious flux flow pattern was found pro-
ceeding to a clear strain localization incepts when the porosity of the entire sample
remains relatively uniform (Fig. 4a). (b) The formation of strain localization is
intimately related to a surge of pore water flux flowing from the rest of the sample
into the dilative shear band (e.g., Fig. 4b). (c) When the shear band is fully
developed, the flux flow across the entire sample becomes vanishingly small
(Fig. 4c, d). Nevertheless, the overall distribution of pore water pressure field in the
sample is relatively uniform over the shearing process. The HMM simulation seems
to suggest that in saturated granular media, the flow plays a driver role in causing
localized dilation and inducing strain localization, not the opposite process that the
pore dilation acts a local sucking sink for local flux flow.

Fig. 3 Shear strain contours predicted by HMM tests simulations of uniform a cylindrical sample
under triaxial compression condition (CTC), b cylindrical sample under triaxial extension
condition (CTE), c cubic sample under plane-strain biaxial compression condition (PBC), d cubic
sample under triaxial compression condition (CTC) and e cubic sample under triaxial extension
condition (CTE) [11]
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3.4 Critical State Reached Within Shear Bands

Guo and Zhao [8] found the material response extracted from the RVE at Gauss
point within the shear band formed under drained biaxial shear reached critical
state, with constant stress, fabric anisotropy and volumetric strain. The finding
confirms early pure DEM simulations by Fu and Dafalias [7] and the anisotropic
critical state theory [19, 27]. Indeed, only material points located within the shear
band(s) can possibly undergo excessively large shear deformation (e.g., in [7], the
shear strain amounts to over 400%) to reach the critical state. While in conventional
laboratory tests, such high shear strain levels are difficult to attain under propor-
tional loading conditions.

4 Conclusions and Outlook

A condensed overview was made on hierarchical multiscale modeling of granular
media, in particular relation to the simulation of strain localization in these mate-
rials. The principle, methodology and solution schemes on HMM were summa-
rized. Recent new advances of HMM in simulating saturated granular media and
further gradient or nonlinear enrichments were discussed. Some interesting new
findings attained by various HMM studies on strain localization were highlighted.
As shown, hierarchical multiscale modeling provides a new, effective toolbox for us
to model and understand the multiscale nature of granular media, and opens up new
grounds for exciting research. Exploratory future directions on hierarchical multi-
scale modeling of granular media include: (1) experimental microstructural char-
acterization, verification and validation of the RVE; (2) characterization of realistic
particle shapes for RVEs; (3) fully micromechanically-based modeling of
fluid-particle interactions for the RVE to receive and pass information to the

Fig. 4 Augmented illustration of strain localization and Darcy flux patterns of a saturated dense
sand sample during globally undrained biaxial shear [9]. Note in the figures the thicker and longer
arrows indicate stronger flux of pore fluid flow
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macro-scale domain; (4) consideration of particle crushing in hierarchical multi-
scale modeling; (5) integrated multiscale modeling of continuous-discontinuous
domains/stage transitions; (6) Hierarchical multiscale modeling of cohesive gran-
ular media; (7) Hierarchical multiscale modeling of dynamic problems in granular
media.
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Constitutive Modeling of Granular
Geo-Materials Under High-Speed Impact

Takashi Matsushima and Kan Sato

Abstract A constitutive model of crushable granular geomaterials subjected to
high pressure/high speed compression is proposed in this study. The proposed
model is based on a micromechanical elasticity model of mono-disperse granular
materials [2], and it is extended into well-graded ones in a simple manner. A geo-
metrical recursive equation is introduced to describe the confined crushing process
of granular materials. High-pressure Equation of States of solid [21] is also
incorporated into the model. The basic response of the proposed model is compared
with some experimental data.

1 Introduction

High speed impact problem on geomaterials has been of great concern in various
fields such as earth and planetary sciences [18], materials science [30], energy
engineering, military and civil engineering [32]. The term “high speed” is often
used when the impact speed exceeds the elastic compressive wave speed of a
medium. In such an impact, the density of the medium cannot be regarded as
constant any more, and an instant density increase leads to a shock wave trans-
mission. This phenomenon is often described by the Rankine-Hugoniot equation
[12, 25], and the related Hugoniot Equation of State (EOS) parameters are inves-
tigated experimentally for various solid materials such as metals, plastics and rocks
[15]. Based on such results, more comprehensive thermodynamics theory of solids
has been established [1, 6].

On the other hand, geomaterials on the surface of solid planets, including earth,
moon, mars and others, are usually composed of geological grains, and accordingly
their bulk mechanical behavior is affected by their grain-scale behavior. In particular,
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high pressure impact loading results in considerable grain crushing and subsequent
grain rearrangement, which leads not only to plastic compression but also to drastic
change in their bulk mechanical properties. Such grain crushing effect has been
studied extensively in terms of resulting grain size distribution [31, 33], of single
grain crushing mechanics [22, 34, 36], of quasi-static one-dimensional compression
[23, 26] and shear [5, 19] and of their constitutive modeling [8, 14, 28]. However, to
authors’ knowledge, such constitutive models are constructed mostly within the
framework of quasi-static deformation.

The present paper attempts to construct micromechanics constitutive model for
crushable granular materials subjected to high pressure loading. We begin with a
well-established micromechanics model of monodisperse granular system [2] and
extend it into well-graded granular system. We introduce a geometrical recursive
equation to describe the confined crushing process of brittle granular materials.
Moreover, high-pressure EOS of solid [21] is also incorporated into the model such
that the present model can be applied into the behavior of granular geomaterials
under very high pressure. Finally the basic response of the proposed model is
compared with some experimental data.

2 Micromechanics Elasticity of Mono-Disperse
Grains System

Micromechanical averaging approach to granular systems have been studied since
1980s [2, 4, 7, 35]. In this section we briefly overview the uniform strain elasticity
theory following Chang and Misra [2].

Cauchy stress rate tensor is defined by the spatial average for all the contact
forces rate f i̇ in a representative volume (after deformation), VR as follows:

σ ̇ij =
1
VR

∑
2Nc

c
rif j̇ ð1Þ

where ri is a branch vector connecting the centroids of a grain and a contact point,
and Nc is the total number of contacts in the domain. Note that the summation is
made twice for each contact because two grains are involved in one contact. Contact
force rate vector f i̇ can be related to the contact displacement rate vector δ ̇i as:

f i̇ =Rikf
L̇
k =RikKL

klδ̇
L
l =RikKL

klRjlδ ̇j ≡Kijδ ̇j ð2Þ

K = knn ⋅ nT + kss ⋅ sT + kst ⋅ tT ð3Þ

where Rij is the transformation matrix from the local coordinates which are defined
by the contact normal, n, and tangential, s and t, in terms of Euler angles, β and γ to
the global coordinates as follows:
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RT =
nT

sT

tT

0
@

1
A, n=

cos β sin γ
sin β sin γ

cos γ

0
@

1
A, s=

cos β cos γ
sin β cos γ
− sin γ

0
@

1
A, t=

− sin β
cos γ
0

0
@

1
A ð4Þ

and kn, ks, kt (ks = kt ) are the contact stiffness for normal and tangential directions,
n, s, t, respectively. Note that the superscript L shows a quantity described in the
local coordinates.

Then, we adopt the uniform strain assumption in which δi̇ is described uniquely
by the bulk strain rate tensor εi̇j as δ ̇i = εi̇jð2rjÞ. Accordingly we have the relation
between the stress rate and the strain rate as σ ̇ij =Cijklεk̇l and the overall elastic
stiffness matrix Cijkl is described by the microstructural properties. For further
analysis, the summation of all contacts is transformed into the following integral
over all spatial directions dΩ= sin γ dγ dβ (0≤ γ ≤ π, 0≤ β≤ 2π ) using the prob-
ability density function of n, FðnÞ [13]:

Cijlm =
2
VR

∑
c
ðri Kjl rmÞ= 2Nc

VR

Z
Ω
ri Kjl rmFðnÞdΩ

=
2Nc

VR

Z 2π

0

Z π

0
ri Kjl rmFðβ, γÞ sin γ dγ dβ

ð5Þ

FðnÞ is often represented by the spherical harmonics function. Moreover, in the
case of mono-disperse spheres system, which leads to ri = r ni (r is the grain radius),
the integration is analytically feasible and we obtain various anisotropic stiffness
tensor depending on FðnÞ. The simplest isotropic case ðFðnÞ=1 ̸4πÞ yields fol-
lowing expression on the overall Young’s modulus and the Poisson ratio of the
granular system:

Eg =
zc

2πrð1+ eÞ ð2kn +3ksÞ kn
4kn + ks

� �
, ð6Þ

νg =
kn − ks
4kn + ks

ð7Þ

Here VR was described by the void ratio, e, and the coordination number,
zc =2Nc ̸Ng (the number of contacts per grain), as Nc ̸VR = zc ̸f2Vgrainð1+ eÞg
where Vgrain is the single grain volume, which is Vgrain =4πr3 ̸3 if the compression
of the grain itself is sufficiently small, and Ng is the total number of grains.

Finally, contact stiffness kn and ks are modeled by Hertz model [11] and Mindlin
and Deresiewics model [20] as:

kn =

ffiffiffiffiffi
3r

p
E

2ð1− ν2Þ
� �2 ̸3

f 1 ̸3
n , ð8Þ
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ks =
2ð1− νÞ
2− ν

kn 1−
fs
μ fn

� �1 ̸3

ð9Þ

where E and ν are the Young’s modulus and the Poisson ratio of the solid material
of the grains, and μ is the intergranular friction coefficient. fn is related to the mean
stress p under isotropic condition as follows:

p=
σii
3

=
1

3VR
∑
2Nc

c
rif =

rNc

6πVR

Z 2π

0

Z π

0
fn sin γ dγ dβ=

2rNc fn
3VR

ð10Þ

fs is assumed to be zero for simplicity in this study. After some manipulation, we
obtain the following explicit expressions to connect Eg and νg with E and ν:

Eg =

ffiffiffi
3
2

3

r
5− 4ν
5− 3ν

E
2πð1− ν2Þ

� �2 ̸3 zc
1+ e

� �2 ̸3

p1 ̸3, ð11Þ

νg =
ν

10− 6ν
ð12Þ

where 4≤ zc ≤ 12 depending on the void ratio, based on the isostatic theory
[10, 24].

The previous studies showed that the above uniform strain model provides an
“upper bound” solution of the elastic properties of granular materials [3].
Matsushima and Kaneko [16] showed the model captures the dependence of void
ratio and confining pressure on shear modulus of sands quantitatively.

When one wants to apply this model to well-graded granular materials, the
integration in Eq. (5) is difficult to be done analytically even if the grain size
distribution PðrÞ is analytically specified, because the two PDFs, PðrÞ and FðnÞ,
are coupled. In the next section, we propose a simple method to deal with this
problem.

3 Evolution of Elastic Modulus of Crushable Granular
Materials Under Compression

Based on the power-law grain size distribution observed in the previous
one-dimensional compression experiments of sands [23, 26], we assume a sim-
plified prefractal microstructure after grain crushing, which is constructed in the
following manner. First, we begin with a monodispersed grains of radius r0 packed
in the volume V0 with the void ratio e0, and then fill the void ðVvÞ0 =V1 with the
grains of radius r1 ≪ r0 with the same void ratio. This process gives us the fol-
lowing relation:
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1
e0

=
V0

V1
− 1=

V1

ðVvÞ1
− 1 ð13Þ

and the bulk void ratio after filling the small grains e1 satisfies:

1 +
1
e1

� �
= 1+

1
e0

� �2

ð14Þ

Regarding these equations as a recursive one, we have:

Vk

V0
=

e0
e0 + 1

� �k

, ð15Þ

1+
1
ek

� �
= 1+

1
e0

� �k+1

ð16Þ

Now we consider to replace the regions of the larger grains generated up to the
ðk− 1Þ-th processes, whose volume is V0 −Vk, by a number of “virtual” grains of
radius rk , the same size as those generated by the k-the process. Then we assume
that the contact properties for the “virtual” grains is determined so that the bulk
elasticity is the same as the solid material, E and ν. In other words, we regard the
well-grade grains system as two-phase monodisperse grains system consisting of
the “real” smallest grains region (denoted by region g) and the “virtual” grains
region (denoted by region G). The volumes of those regions are denoted by Vg =Vk

and VG = ðV0 −VkÞ, respectively.
This treatment makes it possible to apply the micromechanics model for

monodisperse grains system in the previous section to the well-graded system.
Since the ratio of the number of contacts in the two region may correspond to their
volume ratio ðα=Vg ̸V0 = ðNcÞk ̸NcÞ, the summation in Eq. (5) is made separately
in the two regions, and accordingly we obtain an overall elastic constitutive model
for isotropic compression as follows:

p= α pg + ð1− αÞpG, ð17Þ

εv = αεg + ð1− αÞεG ð18Þ

pġ =Kgε ̇ELg , ð19Þ

pĠ =KGεĠ ð20Þ

Kg =
Eg

3ð1− 2νgÞ , ð21Þ
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KG =
EG

3ð1− 2νGÞ =
E

3ð1− 2νÞ ð22Þ

Eg =

ffiffiffi
3
2

3

r
5− 4ν
5− 3ν

E
2πð1− ν2Þ

� �2 ̸3 zc
1+ e

� �2 ̸3

p1 ̸3
g , ð23Þ

νg =
ν

10− 6ν
ð24Þ

In order to close the equations, we need to introduce an additional equation:

εĠ =Bεġ + ð1−BÞ Kg

KG
ε ̇ELg ð25Þ

where a parameter B describes the contribution of two extreme conditions; the
uniform strain condition or the uniform stress condition as follows:

ε ̇v = εġ = εĠ ðB=0Þ uniform strain ð26Þ

p ̇= pġ = pĠ ðB=1Þ uniform stress ð27Þ

Next we model the plastic regime, which is mainly caused by the grain crushing
in brittle granular materials. Based on the proposed microstructure, we assume that
the grain crushing occurs only in region g, because the larger grains in region G are
subjected to isotropic stress from a large number of smaller grains surrounding
them. This effect is referred to as “cushioning effect” [8]. In region g, the grain
crushing occurs when the contact force exceeds a threshold. Since we assume the
prefractal structure, the stress condition in region g is identical during loading
process, and accordingly the crushing criterion is simply described as:

pg
= pY crushing
< pY not crushing

�
ð28Þ

Although experimental observations show the grain size dependence on pY [17,
22], we assume pY is constant in this study for simplicity. In order to keep the
pressure constant in region g during plastic compression, the volume ratio α must
decrease such that the compression rate is equal to the plastic void reduction rate

−V ̇PLgv as εĖg = −V ̇PLgv ̸Vg, where εEg is the plastic Eulerian strain defined by the
current configuration and is expressed by the plastic Lagrangian strain εPLg as
εEg = − lnð1− εPLg Þ. Since the void ratio in region g is always e0, we obtain:

VPL
gv =

e0
1 + e0

V0α or V ̇PLgv =
e0

1 + e0
V0α ̇ ð29Þ
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Considering the definition of α (α=Vg ̸V0 excluding the effect of elastic com-
pression), the evolution law of α is obtained as α ̇ ̸α= − ð1+ e0ÞεĖg ̸e0. Accord-
ingly, the integration of this equation yields:

ln α= −
1+ e0
e0

εEg =
1+ e0
e0

lnð1− εPLg Þ ð30Þ

taking care of the initial condition, αjεg =0 = 1.
Then, the void ratio after plastic compression is described as:

e ̄=
VPL
gv

V0 −VPL
gv

=
e0

1 + e0
VPL
g

V0 − e0
1 + e0

VPL
g

=
e0

1 + e0
α

1− e0
1 + e0

α
=

αe0
1 + e0 − αe0

ð31Þ

Note that e ̄ in Eq. (31) does not contain the effect of volume change of grain
solid. In other words, e ̄ is the void ratio in an unloaded state. The calculation of the
void ratio under loading requires the evaluation of the compression of solid. The
elastic volumetric strain of solid in region G, εGs, is equal to εG because it does not
contain voids. The one in region g, εgs, is difficult to obtain because the stress field
in a grain is not uniform, and accordingly the resulting strain is not uniform as well.

e=
V ′

G +V ′

g

V ′

G +V ′
gs

− 1=
ð1− εGÞð1− αÞ+ ð1− εgÞα

ð1− εGÞð1− αÞ+ ð1− εgsÞα ̸ð1+ e0Þ − 1 ð32Þ

where the prime indicates the volume after deformation, and

1− εGs =1− εG =
V ′

G

VG
, ð33Þ

1− εgs =
V ′

gs

Vg ̸ð1+ e0Þ , ð34Þ

1− εg =
V ′

g

Vg
ð35Þ

εgs must be modeled such that the following conditions satisfied:

e≥ 0 ⇔ V ′

g ≥V ′

gs ⇔ ð1− εgÞð1+ e0Þ≥ ð1− εgsÞ ð36Þ

εgs =
0 ðεg =0Þ
1 ðεg =1Þ

�
ð37Þ

Constitutive Modeling of Granular Geo-Materials … 367



www.manaraa.com

Therefore, as the simplest model of εgs, we adopt a bi-linear model as follows:

εgs =
0 ðεg ≤ e0 ̸ð1+ e0ÞÞ
ð1+ e0Þεg − e0 ðεg ≥ e0 ̸ð1+ e0ÞÞ

�
ð38Þ

4 Modification Under High Pressure Regime

The EOS of elastic solids have been studied extensively in the past decades. Here
we use the well-known empirical relation that the bulk modulus of a solid K in-
creases linearly with hydrostatic pressure p [9], that is:

K =K0 +K ′

0ðp− p0Þ K = − v
∂p
∂v

� �
T

K ′ =
∂K
∂p

� �
T

ð39Þ

where K0 and K ′

0 are material constants, v is the specific volume (v=1 ̸ρ) and the
subscript T shows the isothermal process. Note that K ′

0, the derivative of K0 with
respect to p, takes the value ranging 3<K ′

0 < 7 for various solids according to
Ruoff’s relation, K ′

0 = 4s− 1 [27] and the observation (1 < s<2Þ in shock Hugoniot
data [15]. Also, it should be noted that K in Eq. (39) is defined by the Eulerian
frame, which relates the pressure to the strain with respect to the current
configuration.

When we choose p=0 as a reference state, the following relation holds during
the isothermal process:

dv
v

=
− dp

K0 +K ′

0p
ð40Þ

Integrating it, we obtain:

p=
K0

K ′

0

v
v0

� �−K ′

0

− 1

" #
=

K0

K ′

0

ρ

ρ0

� �K ′

0

− 1

" #
ð41Þ

This is well known as Murnaghan EOS during isothermal process [21]. Note that
a more general expression including the effect of the change of temperature [6] is
not used in this study for simplicity.

Now we apply this relation into the well-graded granular system in the previous
section. It is straight forward to do it in region G, which is regarded as the solid
grains subjected to homogeneous boundary stress from sufficiently large number of
contacts with smaller grains. In place of Eqs. (20) and (22) the following relation is
adopted:

368 T. Matsushima and K. Sato



www.manaraa.com

pG =
K0

K ′

0
1− εGð Þ−K ′

0 − 1
h i

ð42Þ

where ρ0 ̸ρ=1− εG is used. On the other hand, the relation in region g is difficult
because the stress field in a grain is not uniform. However, it can be easily con-
firmed that the high pressure effect shown in Eq. (42) becomes predominant when
the applied pressure satisfies p ̸K0 > 0.1, which is much higher than pY in most of
brittle geological solids. Therefore, we assume that there is no high pressure effect
in region g in this study.

5 Validation

Figure 1 shows an example of the response of the proposed model. It includes the
uniform strain case (B = 1), the uniform stress case (B = 0) and intermediate case
(B = 0.1). The plastic (or unloading) void ratio e ̄ (Eq. (31)) and the total void ratio
e (Eq. (32)) are drawn in each case. The parameters used in the calculation are also
shown in the figure. Note that the horizontal axis is the pressure normalized by the
bulk modulus of the solid, K. On the other hand, Fig. 2 shows an example of the
one-dimensional compression of two types of sands; angular mountain silica sand
and round river silica sand [29]. The yield stress py of these sands are about 3 MPa
and 15 MPa, respectively. Although their K s are unknown, the typical value for
silica glass is about 30–40 GPa, and accordingly py ̸K = 10− 3 to 10− 4. Com-
paring the two figures, it turns out that the proposed model well simulates the
experimental results by tuning the parameter B. As shown in Eqs. (25)–(27),
B represents the contribution of two extreme conditions; the uniform strain

10 -4 10 -3 10 -2 10 -1 10 0 10 1
0.0

0.2

0.4

0.6

0.8

1.0

e
e

B=0.1
e
e

B=0

e e
B=1

V
oi

d 
ra

tio

Normalized pressure  p/K

e0=1.0
zc=4.0

=0.25
py /K=0.001
Kp=5.0

Fig. 1 Model response

Constitutive Modeling of Granular Geo-Materials … 369



www.manaraa.com

condition or the uniform stress condition, and will be studied in details in the future
study.

Please note that the experimental results includes the effect of side wall friction,
which may cause the different unloading path from the loading path.

6 Conclusions

The present study attempted to construct a micromechanics-based constitutive
model for crushable granular materials subjected to high pressure loading. The
proposed model can be applied from quasi-static loading to high-pressure impact
loading including the effect of grain crushing and grading change in a reasonable
way. Further experimental validation and modification is needed including the grain
size effect on single particle crushing strength and the stress contribution parameter
B.
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Modelling Fabric Evolution of Granular
Materials Along Proportional Strain Paths

Jinshan Shi and Peijun Guo

Abstract A series of biaxial tests are conducted along proportional strain paths
using DEM to investigate the evolution of internal structure in the overall contact
network and sub-networks (the strong and weak contact networks). The evolution
of fabric in the overall contact network along various strain paths varies with the
imposed strain ratio and the resulting stress ratio. Along dilatant strain paths, a
unique fabric-stress relation is obtained for the strong network as ϕs

1 −ϕs
2 = κðt ̸sÞ

with κ being a constant. The weak contact network and its evolution are affected by
both the stress ratio and the imposed strain ratio. Deformation instability occurs
only along dilatant strain paths and can be related to the degradation of weak
network, even though the strong network dominates the strength of the material.

1 Introduction

The internal structure of a granular material can be altered when the material is
subjected to shear distortion, due to the rearrangement of particles via relative
particle movements including rolling and sliding at particle contacts. When
deformation and shear resistance are concerned, not all contacts play the same role.
According to Radjai et al. [4], the overall contact network can be separated into a
sub-network of “strong contacts” that carry a force larger than the average force and
another sub-network of “weak contacts” with a force lower than the average. The
strong network is the “loading-bearing” network in which the contacts are
non-sliding, whereas the weak network is the dissipative network and contributes to
the average pressure only. Intuitively, the strong and weak contact networks play
different roles in the deformation and failure process of granular materials.
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Various relations have been proposed to quantify fabric evolution. Results of
biaxial tests on stack of photoelastic rods by Satake [6] demonstrate
σ1 ̸σ2 ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffi

ϕ1 ̸ϕ2
p

. Antony et al. [1] propose a relation between the shear stress ratio
and the fabric tensor of strong network as q ̸p≈ ð1 ̸2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ϕ2 ̸ϕ1
p

. Under triaxial stress
conditions, Ng [3] reveals lnðϕ1 ̸ϕ3Þ= kσ1 ̸σ3, while Wan and Guo [8] assume that
the ratio of deviatoric fabric components is proportional to the deviatoric stress
ratio. Sazzad [7] relates the deviatoric stress ratio to the fabric tensor for strong
contact network rather than the whole contact network.

This paper examines the evolution of fabric in granular assemblies during biaxial
compression along proportional strain paths through a series of DEM simulations.
The results reveal that the deviator of fabric tensor based on the strong network has
a unique relation with the deviatoric stress ratio, particularly for specimens along
proportional strain paths corresponding to forced dilation. The maximum value of
the deviator of fabric tensor varies with the applied strain ratio, or the maximum
dilation rate in stress-controlled tests. The examination of the second-order work
shows that the instability of deformation is a consequence of internal structure
collapse indicated by the decrease of fabric anisotropy of the weak contact network.

2 DEM Simulation of Biaxial Tests Along Imposed
Strain Paths

A rectangle packing of polydisperse disks is considered as the DEM specimen,
which is constrained by four rigid sidewalls throughout the deformation history.
A linear force-displacement contact law is employed where the contact behavior is
governed by the normal stiffness kn, tangential stiffness ks and the friction coeffi-
cient μ. Here we assume kn ̸ks =1.0 and μ=0.5. The specimens are sheared along
proportional strain path with constant strain ratio ℜ= − ε1̇ ̸ε2̇. Herein ε ̇1 and ε2̇ are
the strain rate in the vertical (the direction of σ1) and horizontal (the direction of σ2)
direction, respectively. The moving velocities of the boundary walls are slow
enough (ε1̇ = 10−5/s) to maintain a quasi-static condition. The vertical strain rate
(ε1̇) is kept positive (compression), but ε ̇2 can be either positive or negative
depending on the value of ℜ. The proportional strain paths can also be charac-
terized by parameter ϑ= εv̇ ̸γ ̇ that is related to ℜ via ϑ= ðℜ− 1Þ ̸ðℜ+1Þ. All the
proportional strain paths can be categorized into forced dilation with ϑ<0 (or
0<ℜ<1) and forced contraction when ϑ>0 (or ℜj j>1).

Following Radjai et al. [4], we evaluate geometrical anisotropy of granular
assemblies by determining the fabric tensor for both the network of all contacts and
subsets of contacts (the strong and weak contact networks). The fabric tensors of
different contact networks are defined as Satake [5] ϕij = ð1 ̸NcÞΣnki nkj ,
ϕs
ij = ð1 ̸Ns

cÞΣnki nkj and ϕw
ij = ð1 ̸Nw

c ÞΣnki nkj , in which nki is the i-th component of the
unit vector along the direction of contact normal at contact k and the
summation/averaging is taken over all Nc contacts in the contact network. The
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superscripts s and w represent quantities for strong and weak network respectively.
The degree of anisotropy of different contact networks can be characterized by the
deviator fabric qϕ =ϕ1 −ϕ2, qsϕ =ϕs

1 −ϕs
2 and qwϕ =ϕw

1 −ϕw
2 , respectively. The

superscripts s and w stand for quantities for the strong and weak network
respectively.

3 Fabric Evolution

3.1 Internal Structure Evolution of Overall
Contact Network

The evolution of qϕ =ϕ1 −ϕ2 in the whole contact network, which is near isotropic
initially, with respect to the stress ratio (t/s) and shear strain is presented in Fig. 1.
Prior to the state of peak stress ratio, qϕ increases with the increase of (t/s) (see
Fig. 1a). After the peak, a reduction of qϕ is observed as t/s decreases and gradually
approaches the critical state. Significant anisotropy develops when the specimen
deforms along dilatant strain paths and it is considerably affected by the imposed
strain rate. For a given vertical strain ε1, the higher the lateral expansion, the
stronger the induced anisotropy. This implies that the reduced lateral constraint
allows more particles to rearrange themselves easily to form columns in the
direction of σ1, resulting in strong fabric anisotropy. At the same time, reduced
constraint provides less support in the direction of σ2 to the primary force chains,
which may collapse when the deviator stress reaches a certain level. On the other
hand, increased lateral constraint helps to build horizontal contacts, which tends to
increase the number of contacts carrying low forces. Consequently, the fabric
anisotropy become lower in tests along contractant strain paths. Prior to the peak
stress state, the variation of qϕ with t/s and the imposed strain ratio can be described
as ϕ1 −ϕ2 =Aðt ̸sÞn, with A=1.60− 0.94ϑ and n=0.50− 0.76ϑ.

(a) (b)

Fig. 1 Fabric evolution in the whole contact network along imposed strain paths
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3.2 Evolution of Strong Network Fabric/Anisotropy

Figure 2 presents the evolution of qsϕ =ϕs
1 −ϕs

2 in the strong network with the t/s
ratio and shear strain along imposed dilatant strain paths of ℜ=0.43− 1.0. For
dilatant strain paths, a unique relation ϕs

1 −ϕs
2 = κðt ̸sÞ with κ≈ 1.0 is observed

prior to the peak deviator stress ratio, which is different from the fabric evolution of
the whole contact network shown in Fig. 1a. The maximum induced anisotropy
qsϕ, peak appears simultaneously with (t/s)max. The post-peak data are slightly scat-
tered, but are in a narrow band that almost overlaps the pre-peak data. Moreover,
the qsϕ ∼ ðt ̸sÞ relation is independent of the porosity of specimens or the confining
pressure, and a critical state of internal structure exists at large deformation.

For contractant strain paths with ϑ>0 and ℜ>1, the qsϕ ∼ ðt ̸sÞ curves are in a
narrow band confined by the lines ofℜ=1.0 andℜ= +∞; see Fig. 3a. The results
suggest a strong dependency of qsϕ in the strong network on (t/s) along contractant
strain paths with ℜ>1. For imposed contractant strain paths with ϑ>0 and
ℜ< − 1, qsϕ increases monotonically with (t/s) and strongly depends on the value of
ℜ or ϑ. The sustainable high level of anisotropy is owing to the increasing con-
straint in the direction of σ2 along contractant strain paths.

(a) (b)

Fig. 2 Fabric evolution in strong contact network along imposed dilatant strain paths

(a) (b)

Fig. 3 Fabric evolution in strong contact network along imposed contractant strain paths
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3.3 Evolution of Weak Network Fabric/Anisotropy

The evolution of anisotropy in the weak network with the (t/s) ratio and shear strain
along different strain paths are presented in Fig. 4. For deformation along dilatant
strain paths (ℜ<1), minor anisotropy in the weak network develops, with the
principal direction perpendicular to the direction of σ1 and hence the major prin-
cipal direction of fabric tensor in the strong network. Following an initial buildup of
anisotropy with the increase of the t/s ratio and shear strain, the value of qwϕ reaches
its maximum and then decreases with continuous deformation. The initial buildup
of qwϕ along dilatant strain paths can be described by ϕw

1 −ϕw
2 = κwðt ̸sÞm, with κw

and m are functions of ℜ or ϑ. For high dilation rate or low ℜ values (e.g.,
ℜ=0.43∼ 0.65), the anisotropy diminishes gradually after the peak anisotropy.
The level of anisotropy of the weak network is much lower than that developed in
the strong contact network along imposed dilatant strain paths.

For imposed contractant strain paths, qwϕ develops intensively as (t/s) increases.
With the increase of shear strain, the value of qwϕ approaches a limit depending on
the imposed strain ratio ℜ (see Fig. 4b). As a special case, no significant
induced-anisotropy is observed in the weak network when a specimen is subjected
to isotropic compression (ℜ= − 1). In general, the fabric evolution in the weak
network does not depend on the stress state only, and the weak network could be
highly anisotropic along imposed contractant strain paths.

4 Fabric Evolution and Deformation Instability

For deformation along an imposed proportional strain path, the second-order work
is expressed as d2W = dðσ1 − σ2 ̸ℜÞdε1, which implies that instability starts at
ðσ1 − σ2 ̸ℜÞ=max [2, 9]. Figure 5a presents the correlation between qsϕ and
ðσ1 − σ2 ̸ℜÞ along dilatant strain paths with ℜ=0.43∼ 1.0. The thicker dotted
segment on each curve represents states of d2W ≤ 0. One immediate observation is

Fig. 4 Fabric evolution in weak contact network along various imposed strain paths
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that the strong sub-network is responsible for deformation instability since the peak
fabric deviator of the strong subnetwork is reached when d2W = 0. Degradation of
strong contact network with reduced degree of anisotropy takes place following the
onset of deformation instability. These observations indicate that the onset of
deformation instability is accompanied by a degradation or progressive collapse of
strong contact network. However, the degradation of strong contact network may
not guarantee unstable deformation, as can be observed for the case of ℜ=1 in
Fig. 5a.

Figure 5b shows the evolution of qwϕ with ðσ1 − σ2 ̸ℜÞ. For ℜ=0.43∼ 0.86,
ðqwϕÞmax is not associated with ðσ1 − σ2 ̸ℜÞmax that is achieved after the peak of qwϕ .
In all these cases, significant decrease of qwϕ takes place when deformation becomes
unstable. For the strain path of isochoric compression at ℜ=1.0, deformation is
always stable and degradation of qwϕ does not seem to occur. The results for the
contractant strain path of ℜ=2.2 have the same features as those of ℜ=1.0.
Consequently, one may conclude that degradation of strong network seems to be a
necessary but not sufficient condition for deformation instability, while the degra-
dation of the weak network structure will eventually result in deformation
instability.

5 Conclusions

A series of biaxial tests are conducted along different strain paths using DEM to
investigate the evolution of internal structure characterized by the overall contact
network and sub-networks (the strong- and weak-force chain networks). The evo-
lution of fabric based on the overall contact network prior to the peak stress ratio t/s
along various strain paths can be described as ϕ1 −ϕ2 =A t ̸sð Þn, with A and n being
functions of imposed strain ratio. Along dilative strain paths, a unique fabric-stress
relation is obtained for the strong network as ϕs

1 −ϕs
2 = κðt ̸sÞ with κ being a

constant. The value of ðϕs
1 −ϕs

2Þmax within the strong sub-network varies with the

(a) (b)

Fig. 5 Fabric evolution with ðσ1 − σ2 ̸ℜÞ in strong and weak sub-networks
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imposed strain ratio. Deformation instability is observed only along dilatant strain
paths and can be related to the degradation of weak network, even though the strong
contact network dominates the strength of the material.
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Localised Deformation of Weakly
Cemented Sands: A Case Study

Ilaria Soriano, Elli-Maria Charalampidou, Helen Lewis,
Gioacchino Viggiani, Jim Buckman and Gary Couples

Abstract Deformation band occurrence in cemented granular materials is inti-
mately related to grain and cement properties. In this work we focus on a Creta-
ceous sand deposit (France), in which numerous deformation bands have been
locally observed. Material from this deposit is used to fabricate artificially cemented
samples at the laboratory scale. We principally use two experimental techniques to
visualise the inner structure of the natural and artificial samples and comment on the
deformation processes: the Scanning Electron Microscopy (SEM) and the X-Ray
Computed Tomography (XRCT). So far, microstructural observations on the
material far from the deformation bands have revealed that the medium-sized sand
grains are held together by weak menisci bonds made of clays. Inside one defor-
mation band we have discovered, instead, sand grains cemented with clays and
syntaxial quartz overgrowths. We argue that grain fragmentation in the deformation
band is the main silica source for quartz precipitation. The syntaxial overgrowths
formation, however, is still weakly justified by the geological reconstructed pres-
sure and temperature conditions within the sand depositional area. Furthermore, in
the clay cement we have identified quartz micro-fragments, derived probably from
the mentioned grain breakage, and micro-quartz, which may have generated from
the interaction between free silica and clay in the pore space.

1 Introduction

The way grain texture and cement characteristics affect the occurrence of strain
localisation in sandstones has not yet been exhaustively explored. Grain size seems
to control the density of deformation band formation [8] and grain mineralogy tends
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to define the strength of a rock [6], whereas the dependence of deformation bands
on cement properties has been fewly discussed so far.

The role of grain cementation in the laboratory scale has been principally studied
in artificially cemented samples. However, these studies often do not take into
account the nature of the cement that may also affect the mechanical response of
cemented sands [16]. Therefore, it can be argued that artificially cemented granular
materials could lead to different behaviours with respect to the naturally cemented
materials, if the cementing agent is not similar (or at least a good analogue) to the
natural cement. Previous works have documented the influence of different cement
types in the mechanical behaviour of artificially cemented sands [10]. Some other
studies comment on the intrinsic properties of the cement, e.g. cement bonding and
strength with respect to the grain [5]. Mineralogy and degree of cementation [3]
together with variations in cement distribution [2] and morphology can mechani-
cally differentiate samples made of the same granular material.

In this work we aim at a deeper understanding of the interplay between grain
texture and cement characteristics in deformation processes occurring during strain
localisation in a weakly cemented sand deposit. By doing this, we can well
approximate the analysis of deformation band occurrence and evolution in sand-
stones, since the two materials share similar deformation features [11]. The field
study is coupled with a laboratory investigation on artificially cemented sand
samples, which consist of grains coming from the sand outcrops being cemented
similarly to the field case cementing agents.

2 Study Area and Material Properties

The material used in this work comes from a site located near Bédoin, southern
France [14, 17]. This is an undersaturated Cretaceous sand deposit of weakly
cemented sands, which according to geological estimations should have reached a
maximum burial depth of 500 m. The sand grains have an average size of 350 µm
(Fig. 1) and are sub-rounded to round. This material is rather poorly sorted because
of the presence of clay particles mixed with the sand grains. Along the field out-
crops the sand grains are held together by a mixture of clays and water, creating a
matrix with a low degree of cementation.

Although the cemented sands are generally weak, numerous sets of conjugate
deformation bands developed within the outcrops of the French sand deposit. There
is a number of deformation bands with a thickness of 1 to 10 cm (Fig. 2a), with one
reaching up to 50 cm in thickness (Fig. 2b) crossing the deposit sub-vertically with
a strike direction 265.

The study material has been collected from three different sites: (i) from places
far from the deformation bands; (ii) from the thin deformation bands commonly
spread within the field (Fig. 2a); and (iii) from the thick deformation band (Fig. 2b).
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3 Methodology and Tools

The work is divided in three interconnected parts: the first part consists of a thor-
ough inspection of the natural cementation, by analysing the material collected from
the field; the second part involves the reproduction at the laboratory scale of
cementation features (e.g. cement type, morphology) observed in the field case;
with the third part we aim at connecting the two previous parts through the com-
parison of the mechanical behaviour and the assessment of the occurred deforma-
tion processes between the natural (collected from the field) and artificially
cemented (reproduced in the laboratory) sand assemblies.

Fig. 1 Sand grains collected from Bédoin, cemented and rimmed with flocculated clay

Fig. 2 Deformation bands observed in the site on horizontal surfaces: a thin deformation bands;
b a thick deformation band (red tool as scale, l = 15 cm)
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Two different experimental methods are used throughout this study: the Scan-
ning Electron Microscopy (SEM), which is a destructive method, and the X-Ray
Computed Tomography (XRCT), which is a non-destructive one. Note that the two
imaging techniques are distinct and complementary in their outcomes: on the one
hand, with SEM we can produce 2D images with a resolution of nm, necessary to
analyse the role of the cement texture and of the grain characteristics (Table 1); on
the other hand, XRCT cannot reach the same resolution but this technique provides
a 4D visualisation of the sample with a resolution of some µm. This allows us not
only to measure the cement distribution and porosity within the entire sample but
also to quantify grain breakage, through density variation, and grain rotation
occurring during localised deformation (triaxial compression tests).

We are currently working on the understanding of the naturally and artificially
cemented samples using primarily the SEM so as to characterise qualitatively both
materials. The next step is to perform triaxial compression experiments on both
natural and artificially cemented sand assemblies coupled with pre-, syn- and
post-deformation XRCT (not discussed here). The latter are combined with Digital
Image Correlation (DIC) leading to both qualitative and quantitative investigation
of the occurred deformation processes.

4 Cementation Procedures

The laboratory work consists, among others, in the cementation of artificially sand
samples that can be representative of the reference case study. We use sand with the
same mineralogy and grain roundness (Table 1) as the sand in the deposit (collected
directly from the site, far from deformation bands); however, the grain sorting and
size slightly vary since we clean the grains from the clay rimmed around them
(Fig. 1) using initially a water solution at 10% of Sodium Hexametaphosphate,
(surface inhibitor). The grains are, then, washed with distilled water and filtered
with a sieve of small aperture to flush the small particles away, which results in
slightly bigger average grain size sand than the natural one.

Table 1 Selected parameters
of the sample components and
of the assembly that will be
object of measurement

Properties of

Grains Cement
Mineralogy Mineralogy
Roundness, sorting Morphology
Size Content
Orientation Distribution
Assembly
Porosity
Permeability
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Two different cements have been used for the artificial cementation: kaolin clay
and calcium carbonate. The former has a similar mineralogy to the natural cement
detected in the field (i.e. kaolinite minerals among all the other clay types); the
latter, although it has not been detected in our field case, is of equal importance
since it can reproduce a bonding morphology similar to our naturally cemented
sands (i.e. [1, 15]. Moreover, calcite cementation is often found in nature as cement
of granular materials and rocks, sometimes even associated with quartz formation
[18]. Procedures for calcite cementation are proposed in the literature [10, 13]. We
are currently investigating potential alternative procedures.

Kaolin clay cementation

The kaolin clay cement is directly injected from the top of the sample in the sand
matrix through a water suspension containing 20% of clay with respect to the sand
weight. The water quantity is a function of the sample dimensions: for cementing a
sample with a diameter of 11 mm and a length of 22 mm, we use 1 ml of water.
A key point for the cementation procedure is to keep the sample under unsaturated
conditions so as to prevent the clay precipitation at the bottom of the sample, which
systematically occurs in a saturated environment driven by the gravity force. The
applied procedure favours the clay adherence to the sand grains. Our unsaturated
samples resemble the sand deposit, where clay menisci occupy the unsaturated pore
space filled with air, connecting the grains in a weak structure.

To avoid saturation of the sample, the suspension is split in two and is injected
twice in an interval of 1–2 days. Certainly, the double injection creates cement
heterogeneity inside the sample (Fig. 3), which may influence the onset and evo-
lution of strain localisation during the triaxial compression experiments; however,
the heterogeneously cemented sample is not an important issue as long as such
heterogeneity can be identified by the experimental methods (i.e. XRCT). We are
currently working on evolving further the present cementation procedure.

Fig. 3 Cylindrical sample
cemented with clay: bottom
and top of the sample result
being cemented with different
degree of cementation

Localised Deformation of Weakly Cemented … 385



www.manaraa.com

5 Results and Discussion

Initial results concentrate mainly on the better understanding of the sand assemblies
outside and within some of the deformation features in the sand outcrop. Herein, we
focus on the cement type and morphology.

In places far from the deformation bands, the sands are cemented with a mixture
of clays, which should have filled the pore space in an undersaturated environment,
where the presence of air probably led to formation of menisci (Fig. 4). Similarly,
Cheng et al. [1], while focusing on calcite bio-cementation, have shown that partial
saturation favours the deposition of cement at the inter-granular contacts, forming
menisci shapes, whereas in fully saturated conditions, calcite crystals precipitate all
around the pore space and not only at the grain contacts. The presence of menisci
bonds in poorly consolidated sands has been already documented [4] and it is
consistent with our hypothesis that this sand deposit should not have reached a
burial depth greater than 500 m, i.e. it has not experienced consolidation.

Although clay cementation globally characterises the sand outcrops, the
cementation within the thick deformation band (Fig. 2b) is somehow different.
A multiple generation of syntaxial quartz overgrowths has grown around the sand
grains. Figures 5a presents a number of quartz overgrowth layers, which reflect
changes in water chemistry during precipitation stages. Up to nine overgrowths
generations can be observed (see different grey levels). The quartz layers are locally
broken and detached from the surface they were formed on, which could be the
effect of deformation.

Grain fragmentation is also observed inside the thick deformation band, which is
directly linked with deformation processes. Moreover, the presence of numerous
quartz micro-fragments is identified between the broken sand grains. These
micro-fragments are slightly elongated and particularly smooth with a size of 1–
2 µm (Fig. 5b). It is quite unclear the reason for such roundness, since grain
breakage and subsequent grinding of the angular fragments is not likely to produce
such smooth fragment contours.

Fig. 4 Energy Dispersive
X-ray (EDX) image of quartz
sand grains (orange)
cemented to each other
throughout clay menisci
(purple)
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Inside the thick deformation band, clays are also observed in the pore space
holding together all the grain micro-fragments. Clay particles form a flocculated
structure that produces a high surface tension. Some clay particles create also a very
thin film around the sand grains, where the free silica should have precipitated
under the right conditions within the silica mobility window. Usually, the silica in
the overgrowths follows the orientation of the quartz crystals. Due to the presence
of the clay, though, the silica is unable to recognise the existing orientation,
therefore it does not precipitate as syntaxial quartz overgrowths, in agreement with
Haszeldine et al. [9]. Consequently, we have identified locally authigenic
micro-quartz (Fig. 6) instead of quartz overgrowths together with the clay coats.

Fig. 5 Charge contrast imaging (CCI) from the thick deformation band of Fig. 2b showing:
a “pyramidal” syntaxial quartz overgrowths; b elongated and smooth quartz micro-fragments
surrounded by overgrowths

Fig. 6 Charge contrast imaging (CCI) of a detail from the thick deformation band representing the
cement between two quartz grains: flocculated clay and granular micro-quartz
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Within sandstones [12, 18] the main silica sources for syntaxial overgrowths and
micro-quartz are: pressure dissolution of quartz grains; decomposition of feldspar;
clay-mineral transformations; carbonate replacement of silicate minerals; and dis-
solution of amorphous silica. In the case of the French sand deposit, we argue that
the silica comes from the intense grain breakage [7], as a result of grain-to-grain
pressure during the generation of the thick deformation band. Thus, we look at the
quartz overgrowths as post-dated with respect to the strain localisation since so far
we have not located them anywhere else but inside the thick deformation band.

Specific conditions of pressure and temperature in the silica mobility window
have stimulated the precipitation of free silica into layers that coat all quartz grains
and fragments, i.e. syntaxial quartz overgrowths (Fig. 5). We are still investigating
the applied pressure and temperature conditions for this specific sand deposit.
According to thermic gradient data, a maximum temperature of 30 °C has been
reached at shallow burial (≤ 500 m). Moreover, the proximity to the Pleistocene
Glaciated Alps probably favoured a decrease in temperature in the south-eastern
France. However, this estimated temperature is not enough for enhancing quartz
deposition because higher temperatures (70–80 °C) are usually required. Given the
great variability in the conditions that determine the quartz deposition, the origin of
the quartz overgrowths in this French deposit is still open.

6 Conclusions

From our current analysis on samples collected from the French sand deposit it has
emerged that clay cementation mainly characterises this deposit, with clays creating
menisci bridges between the sand grains. A number of deformation bands has been
identified in the deposit. Microstructural investigations on one of these bands have
demonstrated local intense grain breakage, supported by numerous elongated and
smooth quartz micro-fragments that filled tightly the pores between the bigger
(non-fractured) sand grains. The free silica, probably produced by the grain frac-
turing, has precipitated into syntaxial quartz overgrowths, surrounding the sand
grains and quartz micro-fragments. In some cases, especially in the presence of
flocculated clay, such free silica has transformed into micro-quartz. The pressure
and temperature conditions characterising the silica mobility window for the syn-
taxial quartz overgrowth precipitation are not fully clear. We are currently working
on a further understanding of the deformation history regarding the field case by a
thorough investigation of other deformation bands observed in this sand deposit.

388 I. Soriano et al.



www.manaraa.com

References

1. Cheng, L., Cord-Ruwisch, R., Shahin, M.A.: Cementation of sand soil by microbially induced
calcite precipitation at various degrees of saturation. Can. Geotech. J. 50, 81–90 (2013).
doi:10.1139/cgj-2012-0023

2. David, C., Menéndez, B., Bernabé, Y.: The mechanical behaviour of synthetic sandstone with
varying brittle cement content. Int. J. Rock Mech. Min. Sci. 35, 759–770 (1998)

3. den Brok, S.W.J., David, C., Bernabé, Y.: Preparation of synthetic sandstones with variable
cementation for studying the physical properties of granular rocks. C R Acad. Sci. Earth
Planet Sci. 325, 487–492 (1997)

4. Du Bernard, X., Eichhubl, P., Aydin, A.: Dilation bands: a new form of localized failure in
granular media. Geophys. Res. Lett. 29, 21–29 (2002). doi:10.1029/2002GL015966

5. Dvorkin, J., Yin, H.: Contact laws for cemented grains: implications for grain and cement
failure. Int. J. Solids Struct. 32, 2497–2510 (1995). doi:10.1016/0020-7683(94)00279-6

6. Exner, U., Tschegg, C.: Preferential cataclastic grain size reduction of feldspar in deformation
bands in poorly consolidated arkosic sands. J. Struct. Geol. 43, 63–72 (2012). doi:10.1016/j.
jsg.2012.08.005

7. Fischer, C., Waldmann, S., Von Eynatten, H.: Spatial variation in quartz cement type and
concentration: An example from the Heidelberg formation (Teufelsmauer outcrops), Upper
Cretaceous Subhercynian Basin, Germany. Sediment Geol. 291, 48–61 (2013). doi:10.1016/j.
sedgeo.2013.03.009

8. Griffiths, J., Faulkner, D.R., Edwards, A.P., Worden, R.H.: Deformation band development as
a function of intrinsic host-rock properties in Triassic Sherwood Sandstone. Geol. Soc. Lond.
Spec. Publ. 435, 1–16 (2016)

9. Haszeldine, R.S., Cavanagh, A.J., England, G.L.: Effects of oil charge on illite dates and
stopping quartz cement: calibration of basin models. J. Geochem. Explor. 78–79, 373–376
(2003). doi:10.1016/S0375-6742(03)00151-1

10. Ismail, M.A., Joer, H.A., Sim, W.H., Randolph, M.F.: Effect of cement type on shear behavior
of cemented calcareous Soil. J. Geotech. Geoenv. Eng. 128, 520–529 (2002). doi:10.1061/
(ASCE)1090-0241(2002)128:6(520)

11. Kaproth, B.M., Cashman, S.M., Marone, C.: Deformation band formation and strength
evolution in unlithified sand: the role of grain breakage. J. Geophys. Res. Solid Earth 115, 1–
11 (2010). doi:10.1029/2010JB007406

12. McBride, E.F.: Quartz cement in sandstones: a review. Earth Sci. Rev. 26, 69–112 (1989)
13. Molenaar, N., Venmans, A.A.M.: Calcium carbonate cementation of sand: a method for

producing artificially cemented samples for geotechnical testing and a comparison with
natural cementation processes. Eng. Geol. 35, 103–122 (1993). doi:10.1016/0013-7952(93)
90073-L

14. Saillet, E., Wibberley, C.A.J.: Permeability and flow impact of faults and deformation bands
in high-porosity sand reservoirs: Southeast Basin, France, analog. Am. Assoc. Pet. Geol. Bull.
97, 437–464 (2013)

15. Tengattini, A., Das, A., Nguyen, G.D., et al.: A thermomechanical constitutive model for
cemented granular materials with quantifiable internal variables. Part I—Theory. J. Mech.
Phys. Solids 70, 382–405 (2014)

16. Wang, Y.-H., Leung, S.-C.: A particulate-scale investigation of cemented sand behavior. Can.
Geotech. J. 45, 29–44 (2008). doi:10.1139/T07-070

17. Wibberley, C.A.J., Petit, J.-P., Rives, T.: The mechanics of fault distribution and localization
in high-porosity sands, Provence, France. Geol. Soc. Lond. Spec. Publ. 289, 19–46 (2007).
doi:10.1144/SP289.3

18. Worden, R.H., Morad, S.: Quartz cementation in oil field sandstones: a review of the key
controversies. Spec. Publ. Int. Assoc. Sedimentol. 29, 1–20 (2000). doi:10.1002/
9781444304237

Localised Deformation of Weakly Cemented … 389

http://dx.doi.org/10.1139/cgj-2012-0023
http://dx.doi.org/10.1029/2002GL015966
http://dx.doi.org/10.1016/0020-7683(94)00279-6
http://dx.doi.org/10.1016/j.jsg.2012.08.005
http://dx.doi.org/10.1016/j.jsg.2012.08.005
http://dx.doi.org/10.1016/j.sedgeo.2013.03.009
http://dx.doi.org/10.1016/j.sedgeo.2013.03.009
http://dx.doi.org/10.1016/S0375-6742(03)00151-1
http://dx.doi.org/10.1061/(ASCE)1090-0241(2002)128:6(520
http://dx.doi.org/10.1061/(ASCE)1090-0241(2002)128:6(520
http://dx.doi.org/10.1029/2010JB007406
http://dx.doi.org/10.1016/0013-7952(93)90073-L
http://dx.doi.org/10.1016/0013-7952(93)90073-L
http://dx.doi.org/10.1139/T07-070
http://dx.doi.org/10.1144/SP289.3
http://dx.doi.org/10.1002/9781444304237
http://dx.doi.org/10.1002/9781444304237


www.manaraa.com

Compaction Bands in a Porous Sandstone
Sample with Pre-induced Shear Bands

Elli-Maria Charalampidou, Sergei Stanchits and Georg Dresen

Abstract Understanding how different modes of deformation bands may interact at
the same rock mass is of crucial importance, since such interaction may affect the
flow properties within the reservoir rock. In this work we focus on the compaction
band nucleation and evolution within a porous sandstone, in which a shear-band has
been previously developed. For such a purpose, we performed at the laboratory
scale triaxial compression experiments under 20 and 185 MPa confining pressures
on a single Bentheim sandstone specimen. Acoustic Emissions (AE) were recorded
throughout all experimental stages. AE hypocentre locations and AE source
mechanisms were used to describe the spatiotemporal evolution of the developed
deformation bands. The shear band evolution was AE controlled. Shear type
sources were the prevailing mechanisms up to the peak stress, whereas, the shear
band growth was mainly dominated by compressive type sources. The compaction
band nucleated at the tip of the pre-existing shear band and evolved towards the
circumference of the specimen. A second compaction band nucleated with
increasing axial strain at the top part of the specimen and not far from the already
developed shear and compaction bands. The dominant mechanisms during the
compaction band initiation and formation were compressive type sources.
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1 Introduction

Compaction bands in porous sandstones outcrops have been observed only in few
field studies [4, 6, 11]. These deformation features have been mainly described as
tabular zones of localised deformation that accommodate pure compaction, with no
macroscopic evidence of shear [11]. Compaction bands are formed normal or
subnormal to the maximum principal stress direction and are accompanied by
localised porosity loss and permeability reduction [6, 15]. The involved
micro-processes are mainly characterised by grain crushing and pore collapse [5].
Compaction bands are important deformation features, since they can become
baffles to fluid flow and therefore have outstanding implications for hydrocarbon
production or CO2 storage in subsurface geological reservoirs.

On the laboratory scale, a number of experimental studies have been conducted
in order to replicate compaction bands on a much smaller scale so as to better
understand the conditions of their development within sedimentary rocks, i.e.
porous sandstones. In most of these studies intact cylindrical sandstone specimens
have been used [1, 7, 8, 17]. Some other studies introduced pre-machined notches
along the mid- height of the cylindrical specimens to focus on the role of local stress
concentration on the formation of compactions bands [2, 3, 14, 16].

In this work, we investigate at the laboratory scale the impact of a pre-induced
shear band on the initiation and propagation of compaction bands. At the field scale,
this is a very probable scenario, since a variety of different orientation faults may
exist in a subsurface reservoir in which compaction bands may be triggered under
the appropriate stress conditions. The goal of this work is to gain further insights in
the formation and evolution of compaction bands together with the accompanied
micro-processes in cases where pre-existing shear bands are present, which is a
crucial step in expanding knowledge of the larger scale systems. We initially
present the material used and the experimental set-up. Results are discussed com-
paring the spatiotemporal evolution and the involved micro-processes of the
pre-induced shear and the subsequently developed compaction bands.

2 Material and Experimental Set-up

A cylindrical Bentheim sandstone specimen with a diameter of 50 mm and a length
of 125 mm was tested without any lubrication at its top and bottom edges. This
sandstone has an average porosity of 23%, a mean grain size of 210 μm and
contains 95% quartz, 3% kaolinite and 2% orthoclase [7].

Triaxial compression experiments were carried out in a servo-hydraulic loading
frame from Material Testing Systems (MTS). To reduce friction between the
specimen and the end-caps, we installed a slim Teflon disk in-between the above
mentioned interfaces. The loading of the sandstone was performed in two stages.
First loading stage included a triaxial compression test under 20 MPa confining
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pressure. The axial load was applied to the specimen with an Acoustic Emission
control in order to stabilise the failure process [10]. Second loading stage included a
triaxial compression test under 185 MPa confining pressure. The axial load was
applied to the specimen with a displacement control rate of 20 μm/min. In both
experimental stages the applied force was measured with an external load cell and
calibrated with an internal sensor.

Ultrasonic transmission signals and Acoustic Emissions (AE) were recorded
throughout the experiments using: (a) a set of sixteen P-wave piezoelectric sensors
glued directly to the surface of the specimen and sealed in a neoprene jacket with
two-component epoxy and (b) two P-wave piezoelectric sensors embedded in two
metallic spacers placed at the bottom and top ends of the sandstone specimen. The
sensors’ network geometry provided a good azimuthal coverage of the AE events.
All P-wave sensors had a resonant frequency of 1 MHz. AE signals were amplified
by 40 dB, using Physical Acoustic Corporation (PAC) preamplifiers [13]. Ultra-
sonic transmission measurements took place every 30 s. During the velocity
measurements, half of the sensors were disconnected from the preamplifiers and
were emitting electrical pulses of 100 V amplitude and 3 μs duration. The
remaining sensors were recording these pulses.

AE waveforms and ultrasonic signals were stored continuously in a 16 channel
transient recording system (DAXBox, PRÖKEL, Germany) with an amplitude
resolution of 16 bit at 10 MHz sampling rate [13, 14]. After the experiments both
ultrasonic signals and AE waveforms were automatically discriminated. P-wave
onset times were calculated by applying an automatic picking algorithm based on
the Akaike information criterion [9]. 4D AE hypocentre locations were calculated
by minimising travel-time residuals using the downhill simplex algorithm [12],
considering time dependent variations in P-wave velocities and employing an
anisotropic heterogeneous ultrasonic velocity model, consisting of five horizontal
layers [13]. AE events were classified according to their polarity (i.e., the mean of
all signed first motion amplitudes) as tensile (−1 ≤ pol < −0.25), shear
(−0.25 ≤ pol ≤ +0.25) and compressive (+0.25 < pol ≤ +1) type sources [18].

3 Experimental Results

The mechanical behaviour and failure modes of the Bentheim sandstone, under
triaxial compression and at a range of confining pressures has been previously
well-characterised by [1, 7, 14, 16, 17]. However, all previous laboratory works
were carried out on intact specimens, i.e. specimens that did not have any labo-
ratory induced deformation feature that could be viewed as an induced structural
heterogeneity within the sample, although some specimens had a mid-high cir-
cumferential notch, which constituted a geometrical heterogeneity. In this work, we
consecutively loaded a single Bentheim specimen, which initially developed a shear
band (first loading stage) acting as stress concentrator for the subsequent com-
paction bands (second loading stage) formation.
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3.1 Shear Band

Figure 1 shows the loading curve from the Bentheim specimen, which was initially
subjected to triaxial compression under 20 MPa. The specimen failed by shear
localisation along a single non-planar shear band. Differential stress (q) is plotted as
a function of axial strain (q = (σa – σr), where σa is the axial stress and σr is the
confining pressure, respectively; the latter being constant during the experiment).
During this loading stage, the failure process was stabilised by controlling the axial
stress to maintain a constant rate of AE. The post-peak stress curve can be followed
quasi-statically [10], extending the shear band growth process to almost 2 h, which
normally would take place abruptly in a couple of seconds.

Three 2D projection of the 4D AE hypocentre distributions (one perpendicular
and two parallel to the specimen axis) are shown in Fig. 2a–f, corresponding to the
equivalent time intervals highlighted by red circles in Fig. 1. Only AE events with
amplitudes larger than 1 V are plotted. The colour map represents the polarities of
these AE events. The accuracy of AE hypocentre location is about 2 mm.

AE activity has been initially recorded at the top edge boundary, however, soon
after the peak stress (Fig. 2a onwards), it concentrates along the shear band that
progressively evolves from the top to the mid-section (∼65 mm from the bottom
edge) of the specimen. The resolved shear band developed at an angle of ∼60° to
the maximum principal stress direction and it is mainly characterised by AE events
(amplitudes larger than 1 V) with polarities ranging from 0 to 1 (i.e. shear and
compressive type sources).

3.2 Compaction Band

After the shear band creation (Sect. 3.1), the confining pressure was increased from
20 to 185 MPa. Subsequently, the Bentheim sandstone specimen was loaded in
triaxial compression (under 185 MPa confining pressure) at a fixed displacement

Fig. 1 Differential stress as a
function of axial strain. The
dark and the light colour lines
highlight the loading and the
unloading of the specimen,
respectively
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rate corresponding to a nominal strain rate of 2 × 10−3 s−1. Axial loading was then
stopped close to 1% of maximum axial strain. Figure 3 shows the differential stress
as a function of axial strain. The specimen had an overall strain hardening beha-
viour with local episodic stain softening. In general, the stress drops were small
(with amplitudes ∼0.5 MPa) and only during the last two time intervals (Fig. 3g, h)
the stress drop reached a maximum amplitude of 2 MPa.

Three 2D projection of the 4D AE hypocentre distributions are shown in
Fig. 4a–f, corresponding to the equivalent time intervals highlighted by red circles
in Fig. 3. AE events with amplitudes larger than 1 V are plotted in grey colour,
whereas the polarities of AE events with amplitudes larger than 3 V are plotted in
colour (see colour map). The accuracy of AE hypocentre location is about 2 mm.

Diffuse damage is initially observed within the whole specimen with higher
amplitude AE events (see colour map, Fig. 4) being principally located at its top

Fig. 3 Differential stress as a
function of axial strain. The
dark and the light colour lines
highlight the loading and the
unloading of the specimen,
respectively

Fig. 2 AE spatiotemporal distribution during triaxial compression under 20 MPa confining
pressure: b–g maps of AE event locations for the same time intervals viewed perpendicular and
parallel to the specimen axis
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edge. With increasing stress AE activity concentrates also at the tip of the
pre-existing shear band forming progressively a semi-horizontal compaction band
that propagates towards the circumference of the specimen. During later time
intervals of loading (Fig. 4e, f) a network of deformation bands evolves towards the
top part of the specimen. The compaction bands are primarily characterised by AE
sources with polarities ranging from 0.7 to 1 (compressive type sources).

4 Discussion

The Bentheim sandstone specimen failed by shear localisation when subjected to a
triaxial compression under 20 MPa confining pressure. The recorded peak stress
falls within the stress range characterising the brittle failure of the Bentheim
sandstone reported by [7, 8]. The AE control facilitated a rather slow shear band
growth beyond the peak stress. A compaction band initiated at the tip of the
pre-existing shear band, when the Bentheim specimen was loaded under triaxial
compression at 185 MPa confining pressure. Although discrete compaction bands
had developed in arrays subnormal to the maximum principal stress direction in
other intact cylindrical specimens subjected to similar stress conditions [7, 16], the
pre-induced deformation band, in our case, triggered the onset of the compaction
band in a similar way as the pre-fabricated notches in [14, 16]. A second slightly
inclined band developed with increasing cumulative strain (see also [1]).

To further investigate the micro-processes that took place during both loading
stages that have been previously described, AE sources were classified as com-
pressive, shear and tensile sources according to [18]. Figure 5 shows the moving

Fig. 4 AE spatiotemporal distribution during triaxial compression under 185 MPa confining
pressure: c–h maps of AE event locations for the same time intervals viewed perpendicular and
parallel to the specimen axis
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average of the different source type distribution, calculated in a window of 200
events shifted each time by 100 events. The percentage of AE source types was
defined by the number of each source type normalised by the total number of events
within the window.

For the shear band case (Fig. 5a), the shear sources are the prevailing mecha-
nisms during the initial loading stages, with the tensile sources being higher than
the compressive sources. Approaching macroscopic failure, the situation somehow
changes with the shear and the tensile sources to decrease and the compressive
sources to considerably increase. AE control (slow shear band growth) promotes the
compressive mechanisms, which reach a plateau of 65%, while the shear mecha-
nisms reach an average value of 30%.

For the compaction band case (Fig. 5b), the compressive sources are dominant
with an average value well above 95%. Both the shear and the tensile sources are
rather small. The shear sources slightly increase during the small stress drops at the
expense of the compressive sources, however the decrease of the latter is relatively
small.

5 Conclusions

Subsurface reservoir rocks can be populated by a number of deformation features
among which faults and compaction deformation zones. In this work we investigate
the impact of a pre-existing shear band on the formation and evolution of com-
paction bands that developed in a Bentheim sandstone specimen. Shear band
development was AE controlled, which enabled a slower band growth process. The
resolved AE micro-mechanisms indicated a shear dominant nucleation and a
compactant dominant growth of the shear band. A compaction band developed at
the tip of the pre-induced shear band. This deformation band evolved towards the
circumference of the specimen. With increasing axial strain a second compaction
band developed at the top part of the specimen and in proximity with the
pre-existing shear and compaction bands. Compactant sources were the prevailing
mechanisms during the onset and evolution of compaction bands.

Fig. 5 Temporal evolution of AE source types and differential stress for the case of: a shear band
formation and evolution; and b compaction band onset and propagation
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Modelling Localization on Varying Scales

Eleni Gerolymatou, Carlos Grandas and Theodoros Triantafyllidis

Abstract Localization, both in the form of compaction bands and of shear bands,

poses special challenges to finite element simulations, as the results tend to vary with

the used discretization. As a rule, so called non simple continua in the sense of Noll

are used to resolve the problem. In this way an internal length is introduced, which

controls the size of the domain in which strain localizes. Such an approach requires

an element length that is significantly smaller than the internal length, making it thus

unsuitable for practical applications in the large scale. An alternative was suggested

by Pietruszczak and Mróz, as far as shear bands are concerned. In this approach the

shear band thickness is assumed to be a material parameter, with an element size that

is significantly larger. In the present work this approach is extended to compaction

bands and the discretizations required for the two approaches are compared.

1 Introduction

Localization, both in the form of compaction bands and of shear bands, poses special

challenges to numerical simulations. As a rule, so called non simple continua in

the sense of Noll are used to alleviate the numerical issues arising. Such models

introduce in various manners an internal length that controls to a significant extent

the width of the band in which the deformation is localized. Examples are non-local,

higher gradient or micropolar models. These approaches have been proven successful

but are still characterized by a drawback, in so far that they require a discretization

with an element size that is at least as large as the characteristic length.
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An alternative was suggested by Pietruszczak and Mróz [3], as far as shear bands

are concerned. In this approach the shear band thickness is assumed to be a material

parameter and the element size is selected significantly larger. It is thus possible to

consider the mechanical response at the integration point to be that of the composite

material, consisting of undamaged material and of a shear band with given thickness

and orientation.

The aim of the suggested work is twofold. The first part is concerned with

extending the approach suggested by Pietruszczak and Mróz to compaction band-

ing. The second part is concerned with assessing the limits of applicability of the

two approaches, as far as the discretization size is concerned.

2 Elastoplastic Description of the Material Behavior

A convex yield surface with horizontal outward vectors at the intersections with the

p axis and a flexible form is selected:

f = q2 +M2
f h(p)(p − pt)(p − pc) (1)

where Mf is a constant,

h(p) = exp

[
−1
𝛽

(
p − pt

(pc − pt)
− a

)2
]
, (2)

pt is the tensile strength, pc is the strength at isotropic compression and a and 𝛽 are

material parameters. The yield surface variation is entirely due to the variation of pt
and pc and follows the approach introduced by Nova and coworkers [1]. It is assumed

that

pc = ps + pm (3)

where ps reflects the effect of fabric modification and pm the effect of internal bond-

ing. It is further assumed that

ṗs = 𝜌sps
(
�̇�pv + 𝜉s�̇�

p
q

)
(4)

where 𝜌s and 𝜉s are material constants. In addition

ṗm = −𝜌mpm
(|||�̇�pv||| + 𝜉m�̇�

p
q

)
(5)

where 𝜌m and 𝜉m are material parameters controlling the rate of mechanical degra-

dation of bonding. The tensile strength is considered to be analogous to bonding

according to
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Table 1 Material parameters for gasbeton

E (MPa) 𝜈 𝛼 𝛽 Mf m 𝜌s 𝜉m 𝜌m 𝜉m ps (MPa) pm (MPa)

60 0.15 1.3 2.0 2.0 0.2 10.75 0.0 1.25 –1.0 0.15 3.75

pt = −kpm (6)

where k is a dimensionless parameter.

The parameters, which were calibrated on gasbeton, a highly porous material

prone to compaction, are given in Table 1.

3 Nonlocal Model

The averaging function selected for the regularization was

h(𝐱) = 15
16lc

(
1 −

(||𝐱||∕lc)2)2
(7)

where lc is the characteristic length. Another common choice is the Gauss function.

The main difference between the two lies in the fact that the first has a bounded

support, while the second has an unbounded one. The average û of the quantity u is

defined as

û(𝐱) =
∫S h(𝐱 − 𝐬)u(𝐬)ds
∫S h(𝐱 − 𝐬)d𝐬

(8)

Of course within the frame of a numerical scheme the distribution becomes discrete,

so that, assuming i = 1,… ,N to be the set of integration points within distant lc of

a given point, the above relationship becomes

û(𝐱) =
∑N

i=1 wiui∑N
i=1 wi

(9)

where

wi = h(𝐱 − 𝐱i) (10)

In the specific case it was chosen to average the internal variables pm and ps.
A further possibility to regularize the problem is introducing viscosity to the

material behaviour. For the sake of simplicity the Perzyna model [2] was used here.

The strain rates are now decomposed as follows,
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�̇� = �̇�
e + �̇�

vp
(11)

while the evolution of the viscoplastic strain is given by

�̇�
vp = 1

𝜂

⟨
f
f0

⟩N
𝜕g
𝜕𝝈

(12)

where f0 = pc(t = 0)2, N is larger or equal to unity, 𝜂 is a viscosity parameter with

units of time and

⟨u⟩ = {
u, if u > 0
0, otherwise.

(13)

The above implies that the stress state is not necessarily located on the yield locus,

but may lie outside it. For the sake of simplicity, N = 1 is selected here.

For the parameter 𝜂 a value of 40 sec was selected. For the local model this was

found to yield the same results with the elastoplastic, i.e. non viscous, model for the

oedometric compression of a specimen with an initial height of 20 mm to 50% of

axial strain in the space of 30 min. This corresponds to the example used in Sect. 5.

4 Extension of the Pietruszczak and Mróz Formulation

In the above mentioned formulation it is assumed that only the localized zone lies in

the plastic domain. A further assumption made is that the stress field is uniform, both

in the localized band and outside it. Though for shear banding this does not pose a

problem, in order to model the formation of compaction bands, these assumptions

need to be raised.

The non localized and localized domains are viewed as consisting of different

materials, (1) and (2) respectively, and the deformation band is assumed to be planar

with a unit normal along the 𝐞3 direction. Considering the problem in three dimen-

sions, the stress equilibrium requires that

𝜎
(1)
13 = 𝜎

(2)
13 , 𝜎

(1)
23 = 𝜎

(2)
23 , 𝜎

(1)
33 = 𝜎

(2)
33 (14)

In order to determine the local stresses and strains on the basis of the corresponding

global quantities, three more conditions are required. A perfect contact between the

layers is assumed to this purpose:

𝜀
(1)
11 = 𝜀

(2)
11 , 𝜀

(1)
22 = 𝜀

(2)
22 , 𝜀

(1)
12 = 𝜀

(2)
12 (15)

The procedure introduced in [4] is used to evaluate the stress state in each of the

zones as a function of the global stresses, as well as the mechanical response of the

composite material. The only difference introduced here is the fact that the elasto-
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viscoplastic stiffnesses are used for both materials, rather than using the elastic stiff-

ness for the material outside the zone of localized deformation.

The orientation of the zone of localized deformation is determined as usual using

bifurcation analysis, while the width of the band is considered to be a material para-

meter, ld, as suggested by Pietruszczak and Mróz [3]. For the sake of brevity in the

present work we restrict ourselves to compaction localization, which is the case not

covered by the previous analysis. The one further arising difficulty lies in the propa-

gation criterion to be used for compaction bands. It is assumed that the compaction

band propagates, when the intact material reaches the softening limit. Requiring the

stress in the intact material to remain the same, the vertical elastic strain needs to be

maintained as well, so that the vertical strain increment needs to be absorbed by the

propagating compaction band. It must hold therefore that

𝛿𝜀H = 𝛿Hc(𝜀(p)c − 𝜀(p)uc ) (16)

where H is the height of the element, Hc the height of the compaction band and

𝜀
(p)
c and 𝜀

(p)
uc the plastic strain in the compacted and the uncompacted domain respec-

tively. All strains in the above equation are considered in the direction normal to the

compaction zone.

5 Results

An oedometric test on gasbeton is considered with an initial height of 20 mm and last-

ing 30 min. For both approaches the same elasto-viscoplastic model with the same

parameters was used. The results from both approaches are presented and compared

below. In Fig. 1 the results for the local and the nonlocal model are compared. The

mesh dependence in the case of the local model is clearly visible, while it is absent

in the case of the nonlocal model, as would be expected.

Fig. 1 Stress versus strain

for an oedometric test on

gasbeton. The local response

is shown in black for one

element and in red for three

elements. The nonlocal

response is shown in grey
and black for 100 and 200

elements respectively
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Fig. 2 Stress versus strain

for an oedometric test on

gasbeton. The response was

evaluated using the

modification suggested here

of the method introduced by

Pietruszczak and Mróz [3]
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Fig. 3 Comparison of the

modification suggested here

of the method introduced by

Pietruszczak and Mróz [3]

and of the nonlocal model
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In Fig. 2 the response evaluated using the modification suggested here of the

method introduced by Pietruszczak and Mróz [3] is shown for different internal

lengths. As may be seen, the model functions well, under the requirement that the

internal length be smaller than the size of the element.

Finally in Fig. 3 a comparison between the results of the two methods is presented.

It is known that the relation between the internal length of the nonlocal model and

the band thickness is on approximation

ld =
√
2
2

lc (17)

For lc = L∕4, where L is the height of the specimen, the response of both models

is given. As may be seen, the responses are similar. The nonlocal model predicts

two global softening domains, one at the beginning and one at the end of the stress

plateau. The modified model predicts only one, rather more pronounced, drop in

stress.
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6 Conclusions

In the present work an extension of the method of Pietruszczak and Mróz [3] to com-

paction banding was presented in parallel with a nonlocal model. Both approaches

were found suitable for the stable and mesh independent prediction of localization.

The first approach is suitable for large scale problems, requiring a discretization with

an element height that is significantly larger than the band thickness. It seizes how-

ever to be valid when the zone becomes as large as the element or larger. In such a

case, which may occur with propagating compaction bands, the mesh dependence

returns. The nonlocal model on the other hand is not restricted by limitations to the

thickness of a propagating compaction band, but requires a fine discretization that is

not feasible for practical applications.
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Failure of Crushable Grains Using
a Three-Dimensional Discrete Element Model

François Nader, Claire Silvani and Irini Djeran-Maigre

Abstract A three-dimensional grain model based on the concept of particles assem-

bly using cohesive bonds is presented. A script is developed to generate polyhedral

grains, by assembling tetrahedral particles using cohesive bonds. A series of single

grain crushing simulations is performed, and the effect of the intra-granular cohe-

sion on the grain’s strength is studied. Oedometric compression tests are simulated.

The effect of grain breakage on the macroscopical behaviour is evaluated.

1 Introduction

Rockfill material is more and more used in civil engineering, due to the advantages it

exhibits on practical and economical aspects. The stresses inside a rockfill structure

can lead to grain breakage, thus leading to changes in the grain size distribution of the

material, therefore changing the overall behaviour of rockfill under different loading

circumstances.

The discrete element method is the most adapted to simulate the discrete nature

of rockfill and grain breakage. Many models are suggested in previous works in the

literature. The first category of models considers a breakable grain as a single object.

When the stress inside the grain reaches a predefined threshold value, the grain is

replaced by a certain number of smaller grains. Ästrom and Hermann [1] and Tsoun-

gui et al. [12] modelled grains as discs using the smooth contact method. When the

stress inside the disc reaches the threshold value, it is replaced by a number of over-

lapping smaller discs, having the same total mass as the broken grain. A repulsive

force then allows to get rid of the overlap. Ben-Nun and Einav [2] computed the mean

normal contact force acting on a disc, and when the value exceeds the threshold, the

broken disc is replaced by discs small enough to avoid overlapping. To reestablish

mass equilibrium, the discs are then expanded. McDowell and De Bono [8] model

the grain as a sphere, applying the same breakage configuration as Ästrom and Her-

F. Nader (✉) ⋅ C. Silvani ⋅ I. Djeran-Maigre

LGCIE SMS-ID – INSA Lyon, Université of Lyon, Lyon, France

e-mail: francois.nader@insa-lyon.fr

© Springer International Publishing AG 2017

E. Papamichos et al. (eds.), Bifurcation and Degradation of Geomaterials
with Engineering Applications, Springer Series in Geomechanics

and Geoengineering, DOI 10.1007/978-3-319-56397-8_50

407



www.manaraa.com

408 F. Nader et al.

mann [1]. Cantor et al. [3] considered rigid polygons to model grains, and when the

induced tensile stress inside the polygon reaches a threshold value, the polygon is

split in the direction of the principal stress. Lobo-Guerrero and Vallejo [7] used the

largest contact force applied to a disc as a breakage criterion, replacing a broken disc

by a number of smaller grains, losing part of the mass during the process.

The second category of models considers a breakable grain as a assembly of a

number of smaller particles joined together using cohesive bonds. When the stress

applied to the grain leads to internal stresses exceeding cohesive bonds strengths,

bonds start to break, leading to the breakage of the grain. Cheng et al. [4] joined small

spheres using cohesive bonds, and removed 20% of the spheres to induce defects

inside the grain, reducing its strength. Silvani et al. [11] joined together rigid discs

using a Mohr-Coulomb law to form circular grains and simulated oedometric tests.

Nguyen et al. [10] split a circular grain into smaller polygonal particles using a two

dimensional Voronoï tessellation.

The same concept of particle assembly is used to generate three dimensional

grains for our study. The goal is to evaluate the effect of breakage and the complexity

of the behaviour induced by the grains’ angular aspect, phenomena that cannot be

clearly seen in spherical nor in two dimensional models.

In order to find a model as close as possible to reality, rigid tetrahedral particles

(or subgrains) are joined together to form a three dimensional polyhedral grain.

In this paper, the three dimensional grain generation algorithm is presented. Then

a series of single grain crushing simulations is shown to study the effect of intra-

granular cohesion on grain strength. Furthermore, a series of oedometric compres-

sion tests is conducted on breakable grains to evaluate the influence of breakage on

the macroscopic behaviour.

2 Grain Generation

Grain shape is a characteristic that plays a major role in the force distribution and

compaction of rockfill media, and thus the overall macroscopic behaviour. In our

study, this physical parameter is taken into consideration and polyhedral grains are

generated to study the mechanical aspects overlooked by spherical models. To do

that, a script that generates three dimensional polyhedra is written, taking as input

parameters the maximal grain dimension 2 × rmax, the grain elongation e = rmax
rmin

where 2 × rmin is the minimal grain dimension, the number of half-planes Nhalf−planes
and the number of vertices Nvertices in each half-plane.

First, the center point of the polyhedron is placed, then two opposite vertices. A

vertical half-plane is then considered, in which Nvertices vertices are placed at a ran-

dom distance r from the center, such as rmin < r < rmax (Fig. 1). A rotation around the

vertical axis is done to move to the next vertical half plane and vertices are placed.

The same process is repeated until the Nhalf−plane half-planes are filled. Vertices are

then joined to form edges and then faces. Figure 2 shows a specimen of grains gen-

erated with random input parameters.
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Fig. 1 Grain generation

Fig. 2 Sample of 30 randomply generated polyhedra

Once the polyhedron is generated, the Gmsh meshing software is used to divide

the grain into tetrahedral particles. These particles are then considered each as a

rigid object, and joined together using a Mohr-Coulomb law to form a polyhedral

grain. Changing the meshing parameters in Gmsh allows the generation of different

subgranular configurations.
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3 Single Grain Crushing

A first evaluation of the model is an evaluation of the grains’ strength, using single

grain crushing simulations.

The chosen numerical method is the Discrete Element Method (DEM), and more

precisely the Non-Smooth Contact Dynamics (NSCD) method [6, 9] implemented

in the software LMGC90
.

The goal of the NSCD method is to obtain the overall behaviour of a collection of

objects by considering the dynamics of each element, taking into account the inter-

actions between bodies. The problem is studied at two levels: movement equations

of the particles expressed using global variables (kinematic variables) and the inter-

actions described using local variables (contact variables).

Two rigid plates are considered between which the grain is placed. The bottom

plate is fixed, and a downward increasing load is applied on the upper plate until the

grain is crushed (Fig. 3). Once the grain’s breaking force is determined, the charac-

teristic stress 𝜎b is computed using the formula proposed by Jaeger [5]:

𝜎b =
F
d2

(1)

where F is the grain’s breaking force, and d the grain size considered here as the

grain’s maximal dimension.

A single generated grain, of a maximum dimension of 0.04 m is divided into 12

subgrains and subjected to multiple crushing simulations while varying the intra-

granular cohesion between 1 kPa and 104 kPa. During the simulation, the applied

load increases until it reaches a peak. This peak value is considered equal to grain’s

Fig. 3 Single grain

crushing
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Fig. 4 Characteristic stress

as a function of

intra-granular cohesion

breaking force. Figure 4 shows the evolution of the grain’s characteristic stress (Eq. 1)

for the different values of the cohesion. The characteristic stress of the grain increases

from 6.25 kPa to 2.38 × 102 kPa. This clear increase in the grain’s characteris-

tic stress at breakage validates the expected result. When the intra-granular cohe-

sion increases, the stress needed to break the internal bonds joining the subgrains

increases, therefore the applied load needed to break the grain is higher. This means

that we can use experimental data to calibrate the model, in order to simulate and

study the behaviour of a particular material.

4 Oedometric Simulation on a Multigrain Sample

An oedometric compression simulation is conducted on a multigrain sample. 855

grains are deposited by gravity in a rectangular box with a horizontal section of

30 cm ×30 cm, and a height of 26 cm. The initial grain size distribution is uniform,

with a maximal grain dimension of 0.04 m, and all grains have regular polyhedral

geometries (elongation = 1). Each grain is divided into 8–12 tetrahedral subgrains,

and a cohesion of 103 kPa is applied to join the subgrains together (Fig. 5).

The reaction on the upper plate and its displacement are monitored throughout

the simulation, and the oedometric curve showing the evolution of the void ratio as

a function of the applied stress is plotted (Fig. 6). A fast decrease in the void ratio is

observed at the beginning of the compression, up to a stress value of 10 kPa, where

the slope of the curve changes, which means a decrease in the compressibility of the

sample.
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Fig. 5 Sample of breakable

grains under oedometric

compression

Fig. 6 Oedometric curve

for an intra-granular

cohesion of 103 kPa

5 Conclusion

The main conclusions of the study can be summarized as follows:

A specific algorithm is created to generate different types of polyhedral grains.

Regular polyhedra are selected for the single grain crushing and the oedometric

compression simulations, even though the algorithm allows the generation of non-

convex polyhedra with complex shapes.
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The effect of the intra-granular cohesion is demonstrated in a series of single grain

crushing simulations: higher values of the cohesion lead to more resistant grains. The

numerical model is capable of reproducing the behaviour of granular materials under

compression.
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A Micro-Mechanical Analysis of Induced
Anisotropic Damage in Initially Anisotropic
Materials

Mei Qi, Albert Giraud, Jean-Baptist Colliat and Jian-Fu Shao

Abstract This paper is devoted to a micro-mechanical study of induced anisotropic

micro-cracks in initially anisotropic materials. The effective elastic properties of

cracked materials are determined by a rigorous up-scaling homogenization proce-

dure based on an efficient numerical method to calculate Hill polarization tensor. A

linear damage criterion is defined in the framework of irreversible thermodynam-

ics to describe the growth of damage. Multiple families of micro-cracks in different

orientations are taken into account by using the Gauss-type numerical integration

method. Numerical assessments are proposed by using a PCW estimation and a set

of 33 families of micro-cracks for uniaxial tension and compression tests. Induced

crack density distributions are investigated for both isotropic and anisotropic materi-

als. Effects of the initial anisotropy on crack propagation process are clearly demon-

strated.

1 Introduction

Due to nucleation and propagation of cracks, damage is an essential dissipation

mechanism in a class of brittle materials. The induced damage affects not only

mechanical properties of materials such as the degradation of elastic stiffness,

induced anisotropy, unilateral effects, but also transport properties such as the
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enhancement of permeability. Mechanical approaches based on rigorous homog-

enization techniques provide an efficient way to establish relationships between

micro-crack propagation and macroscopic properties.

In this paper, based on a homogenization method, a numerical micro-mechanical

damage model is developed for initially transversely isotropic materials with induced

anisotropic micro-cracks based on the extension of [6, 7]. The representative elemen-

tary volume (REV) of cracked materials is represented by different families of oblate

cracks which are embedded in an initially transversely isotropic elastic solid matrix.

The key step of the homogenization procedure is to determine the strain concentra-

tion law which is based on the Hill’s polarization tensor or equivalently Eshelby’s

tensor [2]. Using the numerical integration of the exact Green’s function provided by

[4] and the coordinate frame rotation method proposed by [3], an efficient numerical

method is proposed and it is able to determine the Hill tensor for an arbitrarily ori-

ented family of cracks embedded in a transversely isotropic matrix. Effective elastic

properties of cracked materials are first determined. By the definition of a linear dam-

age criterion, crack propagation processes are investigated for two different loading

path. Effects of initial material anisotropy are clearly demonstrated.

2 Effective Behavior of Anisotropic Cracked Materials

Consider a REV of cracked material occupying a geometric domain 𝛺 limited by

its external boundary surface 𝜕𝛺. The REV is composed of a transversely isotropic

linear elastic solid and a number of oblate ellipsoidal cracks. All micro-cracks with

the same normal vector are put into the same family, which is defined by its normal

vector n.

Assume the crack growth as the unique dissipation process, the free energy of

cracked material can be expressed by W = 1
2
E ∶ ℂhom ∶ E, with E being the macro-

scopic strain. The effective elastic stiffness tensor of the homogenized equivalent

medium (HEM) can be obtained by a linear homogenization method [6]:

ℂhom = ℂm +
N∑

r=1
𝜑r(ℂc,r − ℂm) ∶ 𝔸c,r (1)

ℂm denotes the elastic stiffness tensor of solid matrix, and ℂc,r denotes the elas-

tic stiffness of the rth family of micro-cracks. The volume fraction per unit volume

of micro-cracks is given 𝜑r =
4
3
𝜋𝜀d. 𝜀 is the aspect ratio of micro-cracks and d is

the crack density parameter which is used as a damage variable. 𝔸c,r is a concentra-

tion tensor which accounts for crack interactions and spatial distribution effects. The

Ponte-Castaneda and Willis (PCW) scheme is used in this work to determined the

concentration tensor:
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𝔸pcw
c,r = [𝕀 + ℙr

𝜀
∶ (ℂc,r − ℂm)]−1

∶
[
𝕀 +

N∑

j=1
𝜑j[𝕀 + (ℙj

𝜀
− ℙd) ∶ (ℂc,j − ℂm)] ∶ [𝕀 + ℙj

𝜀
∶ (ℂc,j − ℂm)]−1

]−1

(2)

Note that two independent tensorial functions have been introduced: the first one

ℙd allows to accounting for the effects of spatial distribution, the second one ℙr
𝜀

denotes the so-called Hill tensor involved in the classical Eshelby’s solution by 𝕊r
𝜀
=

ℙr
𝜀
∶ ℂm and characterizes the interaction between cracks.

The key step of homogenization of cracked materials is the calculation of the

Eshelby or Hill polarization tensor. In the present work, the objective is to study

anisotropic damage evolutions in initially anisotropic materials. In this case, no

analytical solutions are available. Therefore, we shall adopt the efficient numeri-

cal method proposed by [3] to calculate the Hill tensor which is based on the exact

Green’s function proposed by [4]. This numerical method has been presented in [3]

and applied in [5].

3 Damage Criterion

The damage criterion is formulated at the local scale in the framework of irreversible

thermodynamics to describe the evolution of damage:

f r(Fdr , dr) = Fdr −R(dr) ⩽ 0 (3)

Fdr is the thermodynamic force which can be determined by − 𝜕W
𝜕dr

. It is affected

by interactions between different cracks families. The function R(dr) represents the

current material resistance against damage growth at microscopic scale and it is a

function of the damage variables dr, r = 1,… ,N. For the present study, a linear

form R(dr) = c0 + c1dr is proposed. The parameter c0 denotes the initial damage

threshold and c1 is controlling the kinetics of damage evolution.

4 Numerical Applications

In this study, some numerical assessments are performed by using the PCW esti-

mation and a set of 33 families of micro-cracks by neglecting frictional sliding

along cracks surfaces. The Gauss-type integration method (with a selected number

of orientations defined on the surface of a semi-sphere) is used [1]. The numerical

results obtained respectively for initially isotropic and anisotropic materials are pre-

sented and compared. A representative set of parameters are used: for the isotropic



www.manaraa.com

418 M. Qi et al.

material (Em = 38000MPa, 𝜈m = 0.19), and for the transversely isotropic material

(E1 = 38000MPa, E3 = 19000MPa, G13 = 8000Mpa, 𝜈12 = 0.19, 𝜈31 = 0.19), as

well as for the damage evolution law (c0 = 0.74 × 10−3 Jm−2
, c1 = 0.084 Jm−2

), the

initial damage density dr0 = 0, the aspect ratio of micro-cracks 𝜀 = 0.01. A spherical

spatial distribution of micro-cracks is considered for the PCW scheme. The Carte-

sian coordinate system (e1, e2, e3) is used and the axial stress is applied along the

axis e3 in all numerical calculations.

4.1 Uniaxial Tension Test

An uniaxial tension test is firstly studied. Both isotropic and anisotropic matrix weak-

ened by 33 families of penny-shaped micro-cracks are considered. Note that in this

loading condition, all induced cracks are considered to have an open state (ℂc,r = 0).

The boundary conditions of macroscopic stresses are given by 𝜮 = 𝛴e3 ⊗ e3. The

loading is driven by the prescribed tensile strain (E33 > 0).
In Figs. 1a, b, the numerical results of axial stress-strain curves and damage evo-

lutions are presented. It is found that the macroscopic behavior of cracked mater-
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Fig. 1 Comparison of mechanical behaviors of isotropic and transversely isotropic material in

uniaxial tension test: a stress-strain curves, b damage evolution, c rosette surface of damage density

distribution in the plane (e1, e3) at the two points of the figure (a)
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ial is significantly influenced by the initial material anisotropy. It has an interaction

between the initial anisotropy and induced crack propagation. In Fig. 1c, one can see

the comparison of damage density distribution between isotropic and anisotropic

materials in the plane (e1, e3) at the same strain values in Fig. 1a. The rosette sur-

face is obtained in normalizing the crack density of all families of micro-cracks with

respect to the biggest one in the anisotropic material, which is that along the nor-

mal (0, 0, 1). This Figure shows that the micro-crack with the normal (0, 0, 1) plays a

dominant role in the damage evolution, not only in the isotropic material but also in

the anisotropic material. With the influence of the initial anisotropy, the crack den-

sity of the anisotropic material is 4 times smaller than that of the isotropic material

at the same macroscopic deformation.

4.2 Uniaxial Compression Test

An uniaxial compression test is then considered. All micro-cracks are assumed to be

closed (ℂc,r = 𝜂n⊗ n⊗ n⊗ n). In Figs. 2a, b, the numerical results of axial stress-

strain curves and damage evolution are presented. Again, the macroscopic mechan-
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Fig. 2 Comparison of mechanical behaviors of isotropic and transversely isotropic material in

uniaxial compression test: a stress-strain curves, b damage evolution, c rosette surface of damage

density distribution in the plane (e1, e2) at the two points of the figure (a)
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ical behavior of cracked material is affected by the initial anisotropy of the solid

matrix and then by an interaction between the initial anisotropy and induced crack

propagation. With the same manner as Fig. 1c, Fig. 2c shows that the value of crack

density of the anisotropic material is 3 times smaller than that of isotropic material at

the same deformation because of the influence of the initial anisotropy. Further, the

damage propagation in (45◦ 0◦) seems to be the most important direction for either

isotropic or anisotropic material.

5 Conclusion

In this work, a numerical micro-mechanical damage model has been proposed for

a class of brittle materials. Comparing with existing models, the proposed model

is able to describe macroscopic behaviors of initially anisotropic materials with

induced anisotropic micro-cracks. Unilateral effects between open and closed cracks

have also been considered. It is found that the induced damage process is clearly

affected by its interaction with the initial material anisotropy. In our ongoing work,

coupling between damage growth and frictional sliding along crack families is inves-

tigated.
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Strain Localization in High Performance
Fiber Reinforced Cementitious Composites

Marta Miletić and Dunja Perić

Abstract High Performance Fiber Reinforced Cementitious Composite
(HPFRCC) is a cementitious composite, which consists of a specifically tailored
cementitious matrix reinforced with short discrete fibers that have a proper
geometry and enhanced bond properties in order to improve tensile properties of the
overall composite. Despite all of its beneficial properties HPFRCC has not yet
found its way into the engineering practice largely due to the lack of adequate
numerical models. To this end, the main objective of this research was to develop
and implement a combined analytical-numerical algorithm that can capture a
stress-strain response and inception of strain localization in elastic-plastic
HPFRCC. Multi-directional fibers are embedded into a matrix and modeled as a
linear elastic material, while the resulting composite is described by a two-invariant
non-associated non-linear Drucker-Prager hardening plasticity model. A diagnostic
strain localization analysis was conducted for several uniaxial tension and uniaxial
compression tests on a non-reinforced cementitious composite as well as on the
HPFRCC. It was found that the presence of fibers delayed the inception of strain
localization in all tests on the HPFRCC. Furthermore, it appears that the onset of
strain localization in uniaxial tension on HPFRCC detects the inception of dis-
tributed cracking, while the onset of strain localization in uniaxial compression
detects the onset of more localized cracking.
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1 Introduction

HPFRCC was in this study modelled by embedding multidirectional fibers into a
matrix. The resulting composite was described by a two-invariant exponential
Drucker-Prager (EDP) plasticity model with isotropic hardening. Furthermore,
linear and nonlinear hardening was used in order to examine effects of hardening
type on the inception of strain localization. A simple volume-based homogenization
procedure was used to derive the corresponding macroscopic tangent stiffness
moduli tensor of the fiber reinforced composite. Actual uniaxial tension (UT) and
uniaxial compression (UC) tests on non-reinforced mortar and on the HPFRCC
were modelled.

2 Fiber Contribution

In this study, a representative volume element (RVE) was chosen to have a cubical
shape and it is depicted in Fig. 1. The side length of the cubical RVE is two times
greater than the length of a fiber Lf. Fibers are isotopically distributed throughout
the RVE. Fibers were assumed to be cylindrical with a diameter df, length Lf, and an
aspect (length to diameter) ratio ηf. Thus, a macroscopic tangent stiffness moduli
tensor of the composite was developed by consistently homogenizing the contri-
bution of fibers in a RVE Miletić and Perić [1].

Fig. 1 Fiber distribution and orientation in the cubical RVE
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De
ijkl, f =

Ef

nf
∑
nf

m=1
NiðmÞNjðmÞNkðmÞNlðmÞ ð1Þ

where Ef is the elastic modulus of a fiber, nf is the number of fibers contained in
RVE and m is the summation index. A unit normal vector in the direction of fiber
m is denoted by Ni(m).

3 Tangent Stiffness Moduli Tensor

In this study, it was assumed that the cementitious composite is an elastic-plastic
material undergoing an infinitesimal strain and obeying a general non-associative
flow rule. The corresponding elastic stiffness moduli tensor of the homogenized
equivalent isotropic material is denoted by De

ijkl. It is obtained as a weighted sum of
the elastic stiffness moduli tensors of the matrix and of fibers and it is given by

De
ijkl = ð1− χf ÞDe

ijkl,m + χf D
e
ijkl, f = μðδikδjl + δjkδilÞ+ λδijδkl ð2Þ

where χf is a volumetric fiber content and elastic stiffness moduli tensor of the
matrix is given by

De
ijkl,m = μmðδikδjl + δjkδilÞ+ λmδijδkl ð3Þ

and δij is Kronecker delta, μ and λ are Lamé’s constants of the composite, while μm
and λm are Lamé’s constants of the matrix.

4 Conditions for Onset of Strain Localization

An onset of strain localization may be considered as a loss of stability of the
constitutive relation governing the homogeneous deformation. Therefore, once the
inception of strain localization occurs a local constitutive level response is not valid
anymore.

A classical Rice-Rudnicki condition for onset of strain localization Rudnicki and
Rice [2] was used to obtain analytical solution for a critical hardening modulus Hcr

and a unit vector ni perpendicular to the direction of deformation band. The tangent
stiffness moduli tensor for plane stress loading was obtained from Eq. (2), thus
enabling use of the analytical solution given by Runesson et al. [3], which also
gives the corresponding eigenvector zi.

Strain Localization in High Performance Fiber … 423
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5 Application to Drucker-Prager Model

The high performance fiber reinforced composite was described by two-invariant
exponential Drucker-Prager (EDP) plasticity model with isotropic hardening. The
corresponding yield and plastic potential functions can be found in ABAQUS [4].
The model parameters are also defined in ABAQUS [4]. The constitutive model
was calibrated against the actual experimental data Sirijaroonchai [5] and the
resulting parameters are shown in Table 1. Parameter E represents the modulus of
elasticity of the HPFRCC, ν is the Poisson’s ratio of the HPFRCC, and ψ corre-
sponds to a dilatation angle measured at a high confining pressure. The rest of the
material parameters are described in ABAQUS [4].

Onset of strain localization (OSL) was detected in case that the critical hardening
modulus is equal to the actual hardening modulus.

Two types of isotropic hardening were investigated in this study: linear and
nonlinear. In the case of non-reinforced cementitious composites, the assumption
was made that the deviatoric stress at the onset of yielding coincided with the peak
deviatoric stress in UT, thus resulting in no hardening.

6 Results

Figure 2 depicts the comparisons between the numerically predicted and experi-
mentally observed responses Sirijaroonchai [5] in plane stress UT tests for the EDP
model. It can be seen that addition of fibers to the mortar had a minor effect on the
increase of the yield stress in UT while its major contribution was in increase in the
peak stress and tensile strain capacity. For example, the yield stress of mortar was
approximately 0.77 MPa. However, for the χf of only 1% the yield stress increased
to approximately 1.1 MPa. Moreover, the peak stress of mortar was at least four
times lower than the peak stresses of HPRFCCs. The predicted axial strain level at

Table 1 Material properties

Property Mortar HPFRCC-1 HPFRCC-1.5 HPFRCC-2

Xf (%) 0 1 1.5 2
E (GPa) 26.59 26.66 26.70 26.72
ν 0.2 0.2007 0.2011 0.2014
a (x10−4) 4 7.3 7.4 6.5
b 2.8 2.65 2.64 2.67
pt0 (MPa) 0.27 0.38 0.4 0.41
ψ (°) 22 15 13 11.5

424 M. Miletić and D. Perić
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the OSL in the plain mortar coincided with the axial strain level at which a severe
post peak drop in deviatoric stress began. On the contrary, the predicted OSL in
fiber reinforced materials was followed by a significant hardening leading to sig-
nificantly increased peak stresses as compared to the plain mortar. Thus, it appears
that the principal mechanism of the delayed OSL in the UT tests was fiber-induced
increase in the yield stress. Furthermore, the numerical predictions seem to indicate
that OSL in plain mortar coincides with the formation of a localized major crack.
On the contrary, the OSL in HPFRCC indicated the inception of distributed
cracking that manifests itself in the development of a global level hardening
mechanism. Thus, the major crack development appears to have been delayed
through the mechanism of fiber induced distributed cracking.

Figure 3 shows numerically predicted stress-strain responses for plane-stress UC
tests according to EDP model. Experimentally observed responses were not
included in Fig. 3, because the experimental data Sirijaroonchai [5] are available
only for axisymmetric UC tests. In the case of the plain cementitious composite, the
predicted OSL coincided closely with the peak stress. For HPFRCC, stress-strain
responses exhibited more pronounced strain hardening prior to the predicted OSL,
which also coincided closely with the peak stress. Moreover, results showed a 25%
increase in the peak stress in HPFRCC compared to the plain mortar.

Fig. 2 Experimentally observed and numerically predicted responses for EDP model with linear
and nonlinear hardening (UT tests)

Strain Localization in High Performance Fiber … 425



www.manaraa.com

7 Conclusions

It was found that the presence of fibers delayed the OSL in all tests, which appears
to be in agreement with the experimental data. The delay was more pronounced in
UC tests than in UT tests.
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On the Three-Dimensional Extension
of the Micromechanically-Based H-Model

Hao Xiong, François Nicot and Zhenyu Yin

Abstract Constitutive modeling of granular materials is still a central issue. Granu-

lar materials react with complicated mechanical responses when subjected to exter-

nal loading paths. This leads to sophisticated constitutive formulations requiring

large number of parameters. In order to avoid this, a micromechanically based model

embedding both micro-scale and meso-scale is developed. The 3D-H model takes an

intermediate scale (meso-scale) into account, which makes it possible to describe a

variety of constitutive features in a natural way. The conventional triaxial compres-

sion tests are selected to examine the model performance.

1 Introduction

Granular materials are significant constituents involved in many industrial processes

and geophysical phenomena. However, no fundamental statistical theory is currently

available to describe their properties. The behavior of one single grain is easily under-

stood, but the properties of a granular collection are much more complex. Several

focal topics are wildly discussed such as strain localization, instability occurrence

and the existence of a bifurcation domain within the plastic limit surface, in which a

variety of failure modes can be encountered [1]. These macroscopic features not only
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need to be observed, but also need to be understood. Thus, increasing researches on

the micro-scale are conducted to explain the physical background, including the fail-

ure occurrence [4], the force chain buckling [5] and the meso-structure evolution [6].

Recently, a series of micro-mechanical models have been proposed by considering

the average behavior of all contacts along each contact direction [3], or considering

a meso-structure oriented along all the directions of the physical space [2]. In this

paper, a three-dimensional extension of the H model is developed based on a multi-

scale approach. The model responses on confining stress dependent stress-strain rela-

tionships are then examined, based on which the critical state can be described.

2 The Three-dimensional-H Model

In 3D conditions, a global coordinate system
(
x⃗1, x⃗2, x⃗3

)
is required, where x⃗1, x⃗2, x⃗3

axes stand for the principal stress directions on the macro-scale. The 3D-H model is

derived from the incremental macroscopic strain tensor 𝛿 ̄�̄� to the incremental macro-

scopic stress tensor 𝛿 ̄�̄� by transforming the micro-scale and meso-scale information.

No rotation of the principal axis of both stress and strain tensors is supposed to take

place. The kinematic localization is expressed 𝛿
⃗L = ̄

̄P𝛿 ̄�̄� ̄̄P−1
⃗L, where ⃗L = [l1, l2, l3]T

and
̄
̄P is rotation matrix.

The meso-structure is composed of ten spherical grains with the identical radius

rg (Fig. 1b). This meso-structure is selected because it includes a grain cluster, large

enough to contain four force chains, and enabling grain rearrangement. It can be

described analytically, and solved by hand, which is a great advantage. The grain
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(a) Global and local coordinate systems
of 3D-H model.
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(b) Meso-Structure of 3D-H
model.

Fig. 1 Coordinate systems and meso-structure of 3D-H model
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centers respectively belong to two mutually perpendicular planes. Meanwhile, the

centers of grains make up two mutually perpendicular hexagon patterns. Thus, the

meso-structure can be decomposed into two independent hexagon patterns: Hexagon

A (shown in Fig. 2) and Hexagon B (similar to Hexagon A). Inheriting the fea-

tures from the H model, this meso-structure is able to undergo complicated kine-

matic mechanisms, including local dilatant and contractant behaviors. To simplify

the derivation, it is assumed that each meso-structure is subjected to an external

symmetric load. Consequently, only two contacts between grains 1 to 2 and grains

2 to 3, respectively denoted by contact 1 and contact 2, are considered in Hexagon

A. T1 is the tangential component and N1 is the normal component of the contact

force of contact 1. The contact force applied by grain 3 to grain 2 only involves a

normal component N2, the tangential component is nil due to the symmetry. The

relative incremental displacement between grains 2 and 3 is composed of a normal

component 𝛿u1n and a tangential component 𝛿u1t . Likewise, the relative incremental

displacement of contact 2 is composed of a single normal component. Employing

the notations given in Fig. 2a, it follows that

𝛿u1n = 𝛿d1
𝛿u1t = d1𝛿𝛼1
𝛿u2n = 𝛿d2

(1)

The geometrical compatibility yields:

l1 = d2 + 2d1 cos 𝛼1
l2 = 2d1 sin 𝛼1

(2)
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Fig. 2 Mechanical description of hexagon pattern A
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Force balance of grain 1 along direction n⃗ and of grain 2 along direction w⃗ reads:

Fa
1 = N1 cos 𝛼1 + T1 sin 𝛼1

F2 = N1 sin 𝛼1 − T1 cos 𝛼1
(3)

A elastic-perfect plastic inter-particle contact law is selected:

𝛿Fc
n = kn𝛿ucn

𝛿
⃗Fc
t = min

{‖‖‖
⃗Fc
t + kt𝛿 ⃗uct

‖‖‖ , tan𝜑g
(
Fc
n + 𝛿Fc

n
)}

×
⃗Fc
t + kt𝛿 ⃗uct

‖‖‖
⃗Fc
t + kt𝛿 ⃗uct

‖‖‖

− ⃗Fc
t (4)

Thus, differentiating Eq. 3 and combining with Eq. 4 gives:

𝛿Fa
1 = −kn cos 𝛼1𝛿u1n + kt sin 𝛼1𝛿u1t − F2𝛿𝛼1

𝛿F2 = −kt cos 𝛼1𝛿u1t − kn sin 𝛼1𝛿u1n + Fa
1𝛿𝛼1

(5)

Differentiating Eq. 2 and combining with Eq. 5 leads to the following algebraic

system expressing the incremental changes in 𝛿d1, 𝛿d2 and 𝛿𝛼1 with respect to the

incremental changes in 𝛿l1 and 𝛿l2

⎡
⎢
⎢
⎣

2 cos 𝛼1 1 −2d1 sin 𝛼1
2 sin 𝛼1 0 2d1 cos 𝛼1

cos 𝛼1 +
A1
kn
sin 𝛼1 −1

F2−B1 sin 𝛼1
kn

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝛿d1
𝛿d2
𝛿𝛼1

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

𝛿l1
𝛿l2
0

⎤
⎥
⎥
⎦

(6)

where: in elastic regimeAi = 0, Bi = ktdi; in plastic regime Ai = kn𝜉i tan𝜑g, Bi = 0.

Thus, combining Eq. 1, 5 and 6, the incremental constitutive relation for Hexagon

A can be expressed as follows:

1
|D|a

[
Ka
11 K

a
12

Ka
21 K

a
22

] [
𝛿l1
𝛿l2

]
=
[
𝛿Fa

1
𝛿F2

]
(7)

Similarly, the incremental constitutive relation for Hexagon B reads:

1
|D|b

[
Kb
11 K

b
12

Kb
21 K

b
22

] [
𝛿l1
𝛿l3

]
=
[
𝛿Fb

1
𝛿F3

]
(8)

Superimposing Hexagon A and Hexagon B, the total incremental force along

direction n⃗ is 𝛿F1 = 𝛿Fa
1 + 𝛿Fb

1 . The incremental constitutive relation of the 3D

meso-structure can be obtained as follows:

̄
̄K𝛿⃗l = 𝛿

⃗F (9)
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with
̄
̄K =

⎡
⎢
⎢
⎢
⎣

1
|D|a

Ka
11 +

1
|D|b

Kb
11

1
|D|a

Ka
12

1
|D|b

Kb
12

1
|D|a

Ka
21

1
|D|a

Ka
22 0

1
|D|b

Kb
21 0 1

|D|b
Kb
22

⎤
⎥
⎥
⎥
⎦

3 Performances of the Three-dimensional-H Model

Drained triaxial tests at different confining pressures are selected to show how

the proposed model simulates the behavior observed for sands. For demonstra-

tion purpose, the simulations at 100, 200 and 400 kPa confining pressures are

compared in Fig. 3 from 𝜀a = 0 to 𝜀a = 25%. The parameters kn = 1.78 × 106 N/m,

kt = 1.06 × 106 N/m, 𝜑g = 35◦ and e0 = 0.65 are adopted. It can be stressed that the

H model does not require more than these 4 parameters.
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Fig. 3a shows that the deviatoric stress q reaches a peak at a small strain about

𝜀a = 5% and undergoes a subsequent softening regime until critical state. As shown

in Fig. 3b, the deviatoric stress q triple increases as the mean stress p during the tri-

axial loading path. The volumetric strain responses at different confining pressures

are displayed in Fig. 3c, where a dilatancy can be observed before the critical state,

except a sensible contractancy captured at the beginning. Figure 3d plots the void

ratio e versus the mean stress p in logarithms form. The curves are increasing until

the critical state line.

4 Conclusions

Based on the multi-scale approach, the H-model is extended to 3D conditions by

replacing the 2D hexagonal pattern with a 3D meso-structure. For this purpose, a

decomposition and superposition approach is introduced to analyze the local behav-

ior of the meso-structure. The 3D-H model only introduces four parameters, wherein

kn, kt and 𝜑g stem from the elastic-perfect plastic inter-particle contact law. The other

one (the opening angle 𝛼0) is a key microscopic geometrical parameter which can

be estimated from the initial void ratio. It is noteworthy that the granular assembly

rearrangement can be reflected by the evolution of the opening angle 𝛼0. Drained

triaxial tests were considered to examine the model performance. The hardening

and softening regimes are well reproduced in the stress-strain response. Moreover,

the critical state can be approximately described from void ratio evolution without

involving any critical state related parameters.
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Borehole Instabilities in Granular Rocks
Revisited: A Multiscale Perspective

Huanran Wu, Ning Guo and Jidong Zhao

Abstract We employ a recently developed hierarchical multiscale approach based
on Finite-Discrete Element Method (FEM/DEM) coupling to revisit the borehole
stability problem for granular rocks. The progressive failure of the borehole is
simulated by gradually reducing the support pressure. A Representative Volume
Element (RVE) with dual-porosity structure is adopted to characterize the material
response of high-porosity quartz-rich sandstone without considering particle
crushing. Compaction bands, or so-called ‘fracture-like’ breakouts are reproduced
which initiate almost from the crossing points of σ0 springline and the borehole wall
and penetrate into the rock matrix along radial direction. Further development of the
borehole is characterized by curved shear bands forming ‘V-shaped’ patterns.

1 Introduction

The stability of borehole is of important relevance to many applications in
geotechnical, mining and petroleum engineering. A wide variety of methods have
been developed to study this topic, including theoretical analysis based on bifur-
cation theory [8], numerical simulations using gradient-enhanced models [11] and
Discrete Element Method (DEM) [9] and experimental means (e.g., [5]). In par-
ticular, miniature drilling experiments have been conducted to examine the failure
mechanism of borehole in rock. Frequently, ‘V-shaped’ or ‘dog-eared’ breakouts
have been observed as a result of progressive extensile or shear failure [5]. Inter-
estingly, fracture-like borehole breakout has more recently been found in the
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drilling experiments of highly porous sandstones, such as high-porosity Berea
sandstones (porosity: 25%) and St. Peter sandstone (porosity: 16–22%) [5]. This
failure pattern for borehole shares great similarities with the ‘compaction band’
observed in these sandstones, including their host-rock properties and their
shear-free, contractive failure mechanism.

In this study, we re-examine the instability patterns and failure mechanisms of
boreholes in granular rocks by employing a hierarchical multiscale modelling
approach based on rigorous coupling of Finite Element Method (FEM) and DEM
[3, 4]; see also [1, 2, 7]. The multiscale approach adopts FEM to solve a boundary
value problem (BVP), and attaches a Representative Volume Element (RVE) to
each Gauss point of the FEM mesh to solve by DEM for the local material con-
stitutive responses. It retains the robustness of FEM in handling BVPs, while
helping by-pass the necessity of assuming phenomenological constitutive models in
conventional continuum approaches. Importantly, this hierarchical approach offers
a viable way to directly link the macro observations with their underpinning
microstructural mechanisms, a key feature to be employed to revisit the borehole
stability problem in highly porous sandstones.

2 Multiscale Analysis of Borehole Stability

We simplify the borehole in a highly porous sandstone into to a plane-strain ring
with the borehole radius of rI =15mm and the outer radius rO =150mm (Fig. 1a).
The whole domain is discretized by eight-noded serendipity finite element elements
(80 layers in the hoop direction and 20 layers in the radial direction). Finer mesh is
adopted for near borehole zone to highlight the deformation patterns around it.
A similar domain and discretization has been used by Papanastasiou and Var-
doulakis [8]. We simulate the progressive failure of the borehole by gradually
decreasing the inner support pressure following a scheme illustrated in Fig. 1b. The
support pressure is normalized by minimal principal stress (σI0), and the time is
normalized by the total time used. In the simulation, the maximum principal stress
(σI1) is reduced at a constant rate, while σI0 is kept unchanged until σI1 is reduced to
be equal to σI0. After that, both σI1 and σI0 are further reduced to zero at the same
rate. Detail formulation and solution procedures of the coupled FEM/DEM multi-
scale approach can be found in Guo and Zhao [3].

A recent study by the authors shows compaction bands can be reproduced in
biaxial compression tests on highly porous sandstone with no particle crushing [10].
Considering the great similarities between the fracture-like breakout and ‘com-
paction band’, we employ a similar dual-porosity structure to generate the RVE for
the multiscale analysis in this study. The typical RVE at an initial state of
σ0 = 30MPa, σ1 = 45MPa is depicted in Fig. 2. Each RVE contains 749 sphere
particles, with an initial porosity of 0.326. A bonded contact model is employed

434 H. Wu et al.



www.manaraa.com

with linear force-displacement contact law and a Coulomb-type friction criterion.
The normal and tangential contact stiffness are expressed as kn =Ecr* (where
r* = 2r1r2 ̸ðr1 + r2Þ, r1 and r2 are the radii of the two contacted particles) and
kt = νckn. Normal and tangential bonds are assigned to each contact as
an =Cnmin r1, r2ð Þ2 and at =Ctmin r1, r2ð Þ2. If the tensile force exceeds the
threshold Fmax

n = an or tangential force exceeds the bond strength
Fmax
t = at +Fntanϕ, the bond will be eliminated, leaving the contact a pure fric-

tional one. The typical micro parameters adopted for multiscale modeling of Berea
sandstone of 25% porosity (BS25) are summarized in Table 1.

Fig. 1 a FE discretization by
eight-noded serendipity
elements of four Gauss points
(reduced integration) and the
prescribed boundary
conditions for 2D borehole
stability analysis and
b Illustration of the simulating
scheme by reducing the inner
support pressure (σI1 is
reduced at a constant rate with
σI0 being kept constant until
the two are equal, after which
both are reduced to zero at the
same constant rate)

Borehole Instabilities in Granular Rocks Revisited … 435
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3 Results and Discussion

To highlight the failure mechanism, a typical case with an initial stress state at
σI0 = σO0 = 30MPa and σI1 = σO1 = 45MPa is demonstrated. The RVE shown in
Fig. 2 is adopted to simulate the material behavior of Berea sandstone of 25%
porosity (BS25). The inner support pressure is reduced following the scheme illus-
trated in Fig. 1b at a rate of 1.25 MPa/S (S is the abbreviation for Step, not second).
The whole simulation is terminated when T =36 s. The initiation and development of
the failure is presented in Fig. 3. The deviatoric strain is defined as ϵq =

ffiffiffiffiffiffiffiffiffi

2e: e
p

, where
e is the deviatoric strain tensor. The particle rotation is defined as θ= ∑NP

θp ̸Np,
whereNp is the number of particles within the packing; θp is the accumulated rotation
of individual particles. Anti-clockwise rotation is taken as positive.

3.1 Initiation of Fracture-Like Breakout

Localized failure of the borehole incepts from T =15 s when σI0 = σI1 = 26.25MPa.
The contours of N, n, ϵq and θ are illustrated in Fig. 3 (I). The failure starts almost

Fig. 2 Initial structure of the
typical RVE prepared for the
subsequent borehole study.
The figure is an augmented
illustration of bonded
particles and macro pores
with the interparticle contact
force network (online: red
lines—compressive contact
forces; blue lines tensile
forces) after consolidation at
the confining pressures

Table 1 Micro parameters for the RVE

Radii (mm) Density (kg/m3) Ec (GPa) νc ϕ (°) Cn, Ct (GPa)

0.2–0.3 2,650 950 1.0 35 6.8
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from the crossing point of σ0 springline and the borehole wall. The porosity of the
failure zone is reduced to a minimum of 0.317 from the original 0.326 (the mini-
mum of the color bar is adjusted in the figure to make the failure zone more
obvious). The contour of θ also shows a typical compaction failure pattern that the
rock mass outside rotates towards the band. A clearer pattern could be observed in
Fig. 3 (II) (d) along the x-axis showing a mature compaction band. With further
decrease of the support pressure, the fracture-like failure zone penetrates into the
rock mass along the radial direction. As inter-particle debonding happens, debon-
ded particles are compacted into a much denser state, resulting in significant
porosity reduction without even considering particle crushing. Figure 3
(II) (b) shows the reduction of porosity from the maximum of 0.328 in the matrix
(slightly larger than the initial value due to unloading) to a minimum of 0.277
within the mature compaction band.

Fig. 3 Contours of N (debonding number), n (porosity), ϵq (deviatoric strain), θ (particle rotation)
at different time step demonstrating the development of localization
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3.2 Shear Failure in the Continuing Simulation

Following the compaction bands, shear failure is observed initiating from the
borehole wall and penetrating into the rock mass since T =25 s when
σI0 = σI1 = 13.75MPa. The failure pattern at T =30 s when σI0 = σI1 = 7.5MPa is
illustrated in Fig. 3 (II). The shear failure is easily identifiable in contours of N, ϵq,
and θ. As the support pressure further reduces, the shear failure becomes more
evident. The failure pattern at the final stage is illustrated in Fig. 3 (III), showing
clearly several curved shear bands around the borehole wall. One major issue in the
study of ‘fracture-like’ breakout is the lack of field observation. All the reported
‘fracture-like’ breakouts have been found in miniature drilling tests in the labora-
tory. While possible explanations may include the inadequate accuracy of logging
technologies [6], the present multiscale simulation results suggest that the formation
of breakouts could be induced by interparticle debonding and pore collapse without
removing rock flakes. Compaction bands may appear as a premier failure pattern
followed subsequently by shear bands. If the rock flakes between the shear bands
and the borehole wall are removed, ‘V-shaped’ breakouts can be recorded as the
eventual failure pattern although compaction bands may have appeared at first.

4 Conclusions

Compaction bands, or so-called ‘fracture-like’ breakouts have been reproduced in
borehole stability analysis in highly-porosity sandstone based on a coupled
FEM/DEM multiscale modeling approach. Under progressive reduction of the
support pressure, compaction bands have been found initiating almost from the
crossing points of σ0 springline and the borehole wall and penetrating into the rock
matrix along radial direction. Further reduction of the support pressure triggers
curved shear bands starting from the borehole wall and penetrating into the matrix
to form a ‘V-shaped’ pattern. If the rock flakes between the shear bands and the
borehole wall are removed, ‘V-shaped breakouts’ can eventually be formed, which
offers a possible explanation on the lack of field report of ‘fracture-like’ breakouts.
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References

1. Andrade, J.E., Avila, C.F., Hall, S.A., Lenoir, N., Viggiani, G.: Multiscale modeling and
characterization of granular matter: from grain kinematics to continuum mechanics. J. Mech.
Phys. Solids 59, 237–250 (2011)

438 H. Wu et al.



www.manaraa.com

2. Desrues, J., Nguyen, T.K., Combe, G., Caillerie, D.: FEM × DEM multi-scale analysis of
boundary value problems involving strain localization. In: Bifurcation and Degradation of
Geomaterials in the New Millennium, pp. 259–265 (2015)

3. Guo, N., Zhao, J.: A coupled FEM/DEM approach for hierarchical multiscale modelling of
granular media. Int. J. Numer. Methods Eng. 99, 789–818 (2014)

4. Guo, N., Zhao, J., Sun, W.C.: Multiscale analysis of shear failure of thick-walled hollow
cylinder in dry sand. Géotech. Lett. 6, 77–82 (2016)

5. Haimson, B.: Micromechanisms of borehole instability leading to breakouts in rocks. Int.
J. Rock Mech. Min. Sci. 44, 157–173 (2007)

6. Haimson, B., Klaetsch, A.: Compaction bands and the formation of slot-shaped breakouts in
St. Peter sandstone. Geol. Soc. Lond. Spec. Publ. 284, 89–105 (2007)

7. Nitka, M., Combe, G., Dascalu, C., Desrues, J.: Two-scale modeling of granular materials: a
DEM-FEM approach. Granul. Matter 13, 277–281 (2011)

8. Papanastasiou, P.C., Vardoulakis, I.G.: Numerical treatment of progressive localization in
relation to borehole stability. Int. J. Numer. Anal. Methods Geomech. 16, 389–424 (1992)

9. Rahmati, H., Nouri, A., Chan, D., Vaziri, H.: Simulation of drilling-induced compaction
bands using discrete element method. Int. J. Numer. Anal. Methods Geomech. 38, 37–50
(2014)

10. Wu, H., Zhao, J., Guo, N.: Multiscale modeling of compaction band in highly porous
sandstone. In: The First International Conference on Geo-Energy and Geo-Environment.
Hong Kong (2015)

11. Zervos, A., Papanastasiou, P., Vardoulakis, I.: Modelling of localisation and scale effect in
thick-walled cylinders with gradient elastoplasticity. Int. J. Solids Struct. 38, 5081–5095
(2001)

Borehole Instabilities in Granular Rocks Revisited … 439



www.manaraa.com

Measuring Force-Chains in Opaque
Granular Matter Under Shear

Eloïse Marteau and José Andrade

Microstructural information, such as inter-particle forces and particle kinematics,
plays a key role in understanding the continuum behavior of complex granular
structure. Although micromechanical techniques have provided tremendous
insights, they still lack quantitative accuracy and, associated with this, capacity to
predict macroscopic behavior. We report here a set of experiments performed on a
novel mechanical device in which we have successfully extracted particle-scale
kinematics and inter-particle forces in a two-dimensional idealized granular
assembly. This mechanical device allows a specimen composed of a
two-dimensional analogue granular assembly to be subjected to quasi-static shear
conditions over large deformation. Digital Image Correlation (DIC) is employed to
measure particle kinematics. The inter-particle forces are inferred using the Gran-
ular Element Method (GEM), provided that average particle strains are measured
and that the location of the contact points in the array is known. DIC combined with
GEM allow us to observe and assess the force distribution in the complex granular
assembly. These results represent an important step in our understanding of the
micromechanical response of a complex granular assembly to applied macroscopic
strains and stresses.

1 Introduction

The ability to measure inter-particle forces in natural granular materials is essential
to understanding how forces are transmitted in complex granular assembly.
Inter-particle forces in granular assemblies were first observed optically in packings
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of idealized photoelastic particles, which have the property to develop birefringence
by the application of stress [2, 3, 5]. Although photoelasticity is a useful experi-
mental technique to study granular materials, it has many limitations: it requires the
use of birefringent grains with simple geometries and is difficult to implement in
three dimensions. To overcome many of these limitations, in this work, we employ
the Granular Element Method (GEM) [1, 4] to infer contact forces in granular
assembly with grains of arbitrary shape, texture and opacity. The GEM method-
ology consists of two stages. First, Digital Image Correlation (DIC) [6–8] is used to
extract information about the average grain stresses while geometric arrangement is
determined by mean of image processing techniques. Secondly, this information is
taken as input for the constrained optimization problem, whose solution is the
desired contact forces. More details on the method can be found in Hurley, 2014. In
this paper, we present a novel mechanical device capable of reproducing
quasi-static shear conditions. We report results for a set of experiments where we
have directly observed the so-called ‘force chains’ using DIC and successfully
applied GEM to measure inter-particle forces in opaque, 2D, frictional granular
materials.

2 Experimental Setup

We have designed and built a novel experimental device for investigating the
continuum behavior of granular material by incorporating microscopic experi-
mental quantities. This mechanical apparatus, pictured in Fig. 1, is capable of
reproducing (quasi-static) shear conditions over large deformation on a
two-dimensional analogue granular assembly. The shear cell consists of a hori-
zontal deformable parallelogram of size 50 cm by 50 cm in the undeformed con-
figuration. The grains stand on a glass plate and are individually tracked by a
camera that sits above the apparatus. A linear actuator provides the shear mecha-
nism while a constant normal stress σn is applied. We measure the shear angle γ and
the strain in the y-direction εyy using image processing whereas the strain in the
x-direction εxx remains equal to zero. We performed experiments on a
two-dimensional analogue opaque granular assembly composed of 400 cylinders of
two different diameters (20 and 30 mm) and height of 25 mm. The grains are made
of polyurethane that has a Young’s modulus of 50 MPa and a Poisson’s ratio of
approximately 0.5.

3 Experimental Results

We present here results of experiments performed using the shear apparatus
described in the previous section where a constant normal stress σn = 14.2 kN is
applied. The εxy component of the strain field extracted using DIC and the
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Fig. 1 Experimental setup
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Fig. 2 Contour distribution of DIC measurements and GEM results for shear test (σN =
−28.5 kPa) at γ = 0.1 and 0.3. a Strain field εxy. b Difference of principal stresses σ1 − σ2.
c Contact forces inferred with GEM superimposed on difference of principal stresses σ1 − σ2
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difference of principal stresses σ1 − σ2 is shown in, respectively, Fig. 2a, b for two
different shear angle γ. The difference of principal stresses σ1 − σ2 is calculated
from the strain field measured with DIC using generalized Hooke’s law. We
emphasize that the contour distribution σ1 − σ2 is directly related to isochromatics
observed with photoelasticity [5]. It can be seen from Fig. 2a, b that DIC mea-
surements provide a qualitative information of the force distribution in an opaque
granular assembly. GEM was then applied to these data sets to obtain the force
distribution as a function of macroscopic load. The resulting inter-particle forces is
superimposed to the field σ1 − σ2 in Fig. 2c. Figure 2c shows that the force
magnitude matches really well measured stress contour distribution and that force
chains are clearly seen to develop. GEM enable a quantitative assessment of force
network. Furthermore, these results showcase that the entire topology of granular
forces can be obtained without resorting to photoelasticity.

4 Conclusion

DIC combined with GEM has allowed the observation and inference of the force
distribution in a complex granular assembly under shear deformation. These pre-
liminary experimental results demonstrate a potential application of the method for
constructing physic-based constitutive models and for understanding the
micromechanical origin of macromechanical phenonema.
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Investigations of Vortex-Structures
in Granular Bodies Based on DEM
and Helmholtz-Hodge Flow Field
Decomposition

Jan Kozicki and Jacek Tejchman

Abstract The paper presents some two-dimensional simulation results of
vortex-structures in cohesionless initially dense sand during a quasi-static passive
wall translation. The sand behaviour was simulated using the discrete element
method (DEM). Sand grains were modelled by spheres with contact moments to
approximately capture the irregular grain shape. In order to detect vortex-structures,
the Helmholtz-Hodge decomposition of a flow displacement field from DEM cal-
culations was used. This approach enabled us to distinguish both incompressibility
and vorticity in the granular displacement field.

1 Introduction

Granular vortex structures (swirling motion of several grains around its central
point) were frequently observed in experiments on granular materials [1, 8] and in
calculations using the discrete element method (DEM) [5, 7, 11]. The dominant
mechanism responsible for the vortex formation was the buckling of force chains
[7, 11]. The collapse of main force chains lead to the formation of larger voids and
their build-up to the formation of smaller voids [7]. The vortices have been mainly
observed in shear zones [7] which are the fundamental phenomenon in granular
bodies [9].

The objective of this paper is to report the results of comprehensive 2D studies
by DEM on vortex-structures in sand behind a rigid wall during its quasi-static
passive translation by using the Helmholtz-Hodge decomposition of the displace-
ment vector field [2, 10]. This detection method has the following advantages over
other techniques: (1) it operates directly on displacement vectors, (2) it is designed
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for both 2D and 3D flow and (3) it does not need any additional parameters for
calculations. The analyses were carried out with spheres with contact moments
[4, 5, 7] to approximately capture the irregular grain shape. In order to accelerate
the computation time, some simplifications were assumed in analyses: larger
spheres, linear sphere distribution and linear normal contact model.

2 DEM Results of Passive Earth Pressure Model Tests

In order to simulate the behaviour of real sand, the 3D spherical discrete model
YADE, developed at University of Grenoble [3] was used by taking advantage of
the so-called soft-particle approach (i.e. the model allows for particle deformation
which is modelled as an overlap of particles).

The DEM calculation results were described in detail in [7]. The quasi-static
simulations were performed for a 2D initially dense sand body of 0.40 m length and
0.20 m height in order to compare with experiments with Karlsruhe sand
(d50 = 0.5 mm) [9]. The vertical retaining wall and the bottom of the granular
specimen were assumed to be stiff and very rough, Since the experiments were
idealized as a 2D boundary value problem, in order to significantly accelerate
simulations, the computations were performed with the specimen depth equal to the
grain size (i.e. one layer of spheres was simulated along the depth only). The
spheres with d50 = 1.0 mm, characterized by a linear grain size distribution, were
assumed (grain size range 0.5–1.5 mm, 62,600 spheres). The initial void ratio of
sand was eo = 0.62 (volumetric weight γ = 25.5 kN/m3).

Figure 1A shows the evolution of the resultant normalized horizontal earth
pressure force (earth pressure coefficient) Kp = 2Eh/(γh

2d50) versus the normalized
horizontal wall displacement u/h (h = 0.2 m, Eh—the horizontal force acting on the
wall) for d50 = 1 mm. The specimen exhibited the initial strain hardening up to the
peak (u/h = 0.038), followed by some softening before a common asymptote was
reached. The earth pressure coefficient was Kp

max = 30 for d50 = 1 mm.
The distribution of single sphere rotations ω during wall translation is presented

in Fig. 1B (red denotes the sphere rotation ω > +30° and blue ω < −30°, dark grey
is related to the sphere rotation in the range 5° ≤ ω ≤ 30° and light grey to the
range −30° ≤ ω ≤ −5°, positive sign means clockwise rotation). Accepting such
a colour convention makes shear zones clearly observable (only particles within
shear zones significantly rotate). There exists a clear grain separation regarding
clockwise (red) and anti-clockwise (blue) rotation. Except of two main shear zones
(curved and radial shear zone), some secondary shear zone might also form [7]. The
curved shear zone started to develop along the specimen bottom for the normalized
wall translation u/h = 0.02 (Fig. 1B(b)). It was fully developed for u/h = 0.06.
Its thickness was ts = 20 mm (20d50). The radial shear zone began to develop for
u/h = 0.04 (Fig. 1B d) and for u/h = 0.06 connected the curved shear zone. Its
thickness was ts = 10 mm. There is a qualitative agreement between DEM simu-
lation results and real experimental outcomes [6, 9].
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3 Numerical Results Using Helmholtz-Hodge
Decomposition

The Helmholtz-Hodge decomposition (HHD) of 3D vector fields is one of the
fundamental theorems in fluid dynamics [2, 10]. It describes a vector displacement
field ξ⃗ in terms of its curl-free and divergence-free components based on potential
functions:

Fig. 1 DEM results (passive case, translating wall, initially medium dense sand, height
h = 0.2 m): A evolution of resultant normalized horizontal earth pressure force 2Eh/(γh

2d50)
versus normalized horizontal wall displacement u/h and B deformed granular body 0.2 × 0.4 m2

with distribution of single sphere rotations: a u/h = 0.02, b u/h = 0.04, c u/h = 0.06 and
d u/h = 0.15 (red colour denotes clockwise rotation ω > +30°, blue colour denotes anticlockwise
rotation ω < −30°) [7]
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ξ ⃗= ∇⃗u+ ∇⃗× v ⃗+ h,⃗ ð1Þ

where ∇= ∂

∂x ,
∂

∂y ,
∂

∂z

� �T
is the gradient, ∇ ⋅ = ∂

∂x +
∂

∂y +
∂

∂z

� �
denotes the divergence

operator, ∇× is the curl operator, u denotes the scalar potential field, v ⃗ is the vector
potential field and h ⃗ denotes the harmonic vector field. The gradient of the scalar
potential function ∇ ⃗u is called the curl-free component and is related to
expansion/contraction (because is irrotational) while the curl of the vector potential
function ∇⃗× v ⃗ is called the divergence-free component and is related to vorticity
(because is incompressible). The harmonic component is related to the pure
translation. A discrete vector field decomposition was done according the method
given in [10]. The system of linear equations was solved using the following
general boundary conditions: ∇⃗× v ⃗ was tangential to the domain boundary v ⃗j

∂T =0
and ∇⃗u was orthogonal to the boundary domain uj

∂T =0.

Fig. 2 Evolution of vector field curl ∇ ⃗× v⃗ (divergence-free component related to vorticity) in
granular specimen area x × y during normalized wall translation u/h: a u/h = 0.025,
b u/h = 0.04, c u/h = 0.05, d u/h = 0.075, e u/h = 0.1 and f u/h = 0.15 (scale denotes velocity
perpendicular to specimen vz in [mm2/iteration]), green circles describe local minima (right-
handed vortices) and red circles local minima (left-handed vortices)
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Figure 2 presents the evolution of the vector field curl ∇⃗× v ⃗ (divergence-free
component related to vorticity) during normalized wall translation u/h. The green
circles describe the local minima (right-handed vortices) and the red circles the local
minima (left handed vortices). Vortex-structures appeared from the wall translation
beginning. They were immediately concentrated in shear zones only. Right-handed
and left-handed vortices alternately occurred. The right-handed vortices dominated
in the curved shear zone and left-handed vortices dominated in the radial shear
zone. Their distance was different.

Figure 3 shows the vector displacement field ξ ⃗ during the normalized horizontal
wall translation u/h. Sphere displacement directions are marked by white arrows.
Based on the displacement vector length and direction changes, a curved shear zone
between the wall bottom and free upper boundary already started in the first cal-
culation step. Later it moved to the right to reach its ultimate position due to wall
friction along the bottom that was close to the maximum resultant normalized
horizontal earth pressure force of Fig. 1A (u/h = 0.04). Behind the curved shear
zone the material was totally rigid. A radial shear zone was created for u/h = 0.065.

The evolution of the scalar field gradient ∇⃗u (curl-free component related to
compressibility) during normalized wall translation u/h is described in Fig. 4. The
green circles describe the sources (local dilatancy minima) and red circles the sinks

Fig. 3 Vector field ξ ⃗ in granular specimen area x × y during normalized wall translation u/h:
a u/h = 0.025 and d u/h = 0.15 (scale denotes vector length in [mm/iteration])

Fig. 4 Scalar field gradient ∇ ⃗u (curl-free component related to compressibility) in granular
specimen area x × y during normalized wall translation u/h: a u/h = 0.025 and d u/h = 0.15
(scale denotes u in [mm2/iteration] (sign (−)—dilatancy, sign (+)—contractancy, green circles—
sources (local dilatancy minima), red circles (local contractancy maxima))
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(local contractancy maxima). Initially global contractancy and later global dilatancy
occurred in the granular specimen. The global dilatancy was maximum after the
peak (Fig. 4b) and later it diminished. In the residual state (u/h ≥ 0.075, Fig. 1A),
local regions of dilatancy and contractancy alternately happened along both shear
zones (with the prevalence of dilatancy).

4 Conclusions

The following main conclusions may be listed from DEM simulations of
vortex-structures in sand during a passive earth pressure problem:

The vortex-structures were the precursor of shear localization since they clearly
appeared in a curved and radial shear zone from the beginning of the deformation
process, i.e. significantly earlier than e.g. based on single grain rotations. They
vortex-structures solely appeared in shear zones during the entire deformation
process They had a tendency to move along shear zones. Their number varied and
was maximum on average at the residual state. The right-handed vortices were
dominant in the curved shear zone and left-handed ones were dominant in the radial
shear zone.

In the residual state, local regions of dilatacy and contractancy alternately
happened along shear zones with a dominance of local dilatancy.
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Restoring Mesh Independency in FEM-DEM
Multi-scale Modelling of Strain Localization
Using Second Gradient Regularization

J. Desrues, A. Argilaga, S. Dal Pont, G. Combe, D. Caillerie and T. kein
Nguyen

Abstract Continuum media from classical mechanics cannot appropriately repro-

duce the evolution of materials exhibiting strong heterogeneities in the strain field,

e.g. strain localization. Models without a microscale representation cannot properly

reproduce the microscale mechanisms that trigger the strain localization, in addition,

first gradient relations don’t present any length parameter in the formulation. This

results in a model without a characteristic length that cannot exhibit any objective

band width. In this paper, techniques to introduce an internal length will be enu-

merated. Microstuctured materials will be retained and in particular Second Gradi-

ent model will be exposed and used along with a FEMxDEM approach. Numerical

results showing the abilities of the enriched model will conclude the text.

1 Introduction

The idea of FEM×DEM is to solve a continuum boundary value problem (BVP)

at the macroscale while obtaining the constitutive material behaviour from a DEM
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microscale in a fully coupled hierarchical multiscale method. Some early works

[11, 16, 20], have put in evidence the potential of the method to provide a refined

description of complex constitutive behaviors. Indeed, FEM×DEM methods allow

to couple the advantages of Discrete Elements and the efficiency of Finite Elements.

Later works have enhanced and extended this approach to the study of anisotropy

[7, 18], granular cohesion [19], material heterogeneity [25], real scale engineering

applications [8, 18], more realistic constitutive behaviors using 3D DEM [12, 26],

macroscale hydro-mechanical coupling [10, 26]. More recently, [12] have embedded

non-local regularization at the macro-scale and [9] has developed a full micro-macro

3D approach.

It is known that for a strain softening material the initiation of strain localiza-

tion can lead to an ill-posed Partial Differential Equation (PDE) problem [23]. The

consequence of this ill posedness are numerical instabilities and strain mesh depen-

dency [22]. Regularization techniques have been developed to overcome these prob-

lem; both nonlocal [5] and local [6, 17] approaches exist. An example of nonlocal

regularization in a FEM×DEM model is presented in [12]. Local formulations use a

local relationship between stress and strains in the same manner as classical constitu-

tive relations are defined. Second gradient model, as a particular case of the Germain

theory [6] has been developed [1, 4, 14, 21]. It has been extensively applied in geo-

mechanics and engineering applications with satisfactory results [3, 13, 24].

Previous developments of FEM×DEM could not take advantage of Second Gra-

dient regularization due to the poor solution stability and limited available mesh

refinement. Recent improvements concerning stability and computational efficiency

allow to build a FEM×DEM model including local Second Gradient. This results in

an objective model capable of simulating real scale problems with any mesh refine-

ment.

2 Introduction of an Internal Length

Models using a first-order constitutive relation of classical mechanical continuum

cannot properly predict the behaviour of a medium with high strain gradients. Those

approaches suffer from non-objectivity due to mesh dependency in localization prob-

lems.

Possible causes: the first-order constitutive relation does not give any information

about the internal length of the model; due to that, the localization band thickness

will tend to shrink to a size proportional to the mesh size. In this way, if the mesh is

refined making the size of elements tend to zero in order to get an exact solution, the

strain will concentrate in a null size band posing obvious problems.

It’s needed to set a relationship between the micro-scale heterogeneity and the

macro-scale characteristic length in order to establish a proper micro-scale size effect

on the macro-scale. An enriched model with microstructure is proposed: local second

gradient model [1, 4, 14, 21].
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Fig. 1 Computational homogenization scheme with Second Gradient

3 Local Second Gradient Model

Microstructured material descriptions consider a continuum field in the micro-scale

enriched by higher order terms [6]. In this way, the kinematics of the media is

enriched by its micro-scale introducing a local dependence on an internal length

parameter. This characteristic length [1] regularizes the solution making strain local-

ization mesh independent. A local formulation complies with the principle of local

action so it states a stress-strain relationship in the same manner as a classical con-

stitutive laws do, this makes the implementation of local regularization in classical

models a straight forward procedure (Fig. 1).

We present the weak form of the balance equations written for the strain gradient

theory viewed as a particular case of the microstructured continuum theory [2]:

∫Ωt

(
𝜎
t
ij

𝜕u⋆i
𝜕xtj

+ Σt
ijk

𝜕
2u⋆i
𝜕xtj𝜕

xtk

)
dΩt − ̄P⋆

e = 0 (1)

where, superscripts t and ⋆ denote, quantities at a given time t and virtual quantities,

𝜎
t
ij is the Cauchy stress tensor, Σt

ijk is the corresponding double stress tensor, u⋆i is a

kinematically admissible virtual displacement feld, xti are the current coordinates of

the points of the studied body and P⋆

e is the external virtual work generated by the

corresponding external forces [15].

4 Numerical Simulations

A compression biaxial test with second gradient enrichment shows how the regular-

ization turns the shear band patterns independent from the mesh size (Fig. 2). This

regularization not only enriches the physics of the model but also accelerates the

simulation because of an improvement of the iterative efficiency, i.e. a regularized
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Fig. 2 Biaxial compression test boundary condition. Results with different mesh size: 128, 512

and 2048 elements. Band width independent of mesh size

problem has less possible solutions meaning that the Newton scheme will converge

faster.

5 Conclusion

A second gradient regularization has been presented. First gradient mechanical mod-

els do not present any internal length, this poses some issues as the problem under-

goes softening and strain localization, i.e. mesh dependency. Second gradient is used

to provide the model with an internal length and to regularize the problem.

Second gradient is a microstructured local model, this means that the relation can

be applied in a material point in the same fashion as a classical constitutive law is.

The regularization is of special interest in the FEM×DEM model; because of the

noisy behaviour of the DEM constitutive law the problem is very likely to lose its

ellipticity leading to an ill posed problem. The second gradient allows to soften the

loss of ellipticity not only regularizing the problem but also allowing for a faster

convergence.

Results are presented, Compression biaxial test simulations with a second gradi-

ent enrichment show that the regularization sets an internal length which makes the

model mesh independent as far as the mesh size is fine enough.
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Strain Localization as a Function
of Topological Changes in Mesoscopic
Granular Structures

Nejib Hadda, Richard Wan, François Nicot and Félix Darve

Abstract In this paper, the microphysical aspects leading to the occurrence of a

localized failure were investigated by examining the initial emergence of ubiqui-

tous potential slip planes and their link to the shear band development. A Discrete

Element Model (DEM) representing a dense granular assembly was considered and

subjected to a biaxial compression such that it undergoes localized failure into a per-

sistent shear band. The paper includes both energetic and meso-structural analyses

based on so-called minimal closed loops.

1 Introduction

One of the most compelling phenomena occurring when a dense granular assembly

is subjected to a drained compression is the emergence of slip planes [1] before shear

banding. At the approach of the limit stress state, a system of potential slip planes

develop into a persistent shear band to the detriment of weaker ones that vanish due to

strain localization into one shear band. Accordingly, the micro- and meso-structural

aspects of shear band development are directly related to those operating during the

initiation of a potential slip plane. In this paper, the development of slip planes within

a granular assembly was analyzed from an energetic viewpoint by considering the

distribution of the plastic work resulting from particles sliding within the granu-

lar assembly. Additionally, meso-structural aspects were examined by exploring the

topological evolutions of so-called minimal closed loops [2–4] (n-cycles). By defi-

nition, minimal closed loops refer to the minimal simple polygons that are formed
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by joining the centers of particles through the existing contacts. Furthermore, the

macroscopic failure was elucidated in terms of the shear strength of each category

of loops with respect to their size. This is accomplished by computing the normalized

deviatoric stress for each category of loop and analyzing its evolution during loading

history. These analyses were made based on numerical simulations performed on a

discrete element model [5] using the open source code Yade [6].

2 Discrete Element Model

In this study, a two-dimensional discrete element model representing a dense dry

sand assembly is considered. It consists of 100,000 cylindrical particles of unit

length packed within four rigid frictionless walls. In accordance with Cundall con-

tact law [5], pairs of interacting particles are connected by linear springs in the nor-

mal and tangential directions of the contact. Hence, the normal and tangential con-

tact forces ( fn and ft respectively) are calculated incrementally as the product of

the springs stiffnesses (kn and kt respectively) and the relative displacement incre-

ments (𝛥un and 𝛥ut respectively) of the two contacting particles. The sliding between

particles is governed by Coulomb friction law through the friction coefficient 𝜇

introduced at the contact level. The granular assembly was subjected to a strain-

controlled biaxial compression at 300 kPa of confining pressure. The compression

was performed in quasi-static regime with zero viscous damping [7]. The physical

and mechanical properties of the numerical model are listed in Table 1. The evo-

lutions of the stress deviator q = 𝜎1 − 𝜎2 and the volumetric strain 𝜀v = −(𝜀1 + 𝜀2)
in terms of the axial strain 𝜀1 resulting from the biaxial compression are plotted in

Fig. 1a. Such responses demonstrate a behavior of a dense dry sand characterized by

a dilatant volumetric strain and a well-marked peak. Moreover, according to Fig. 1b

showing snapshots of the deviatoric strain field (𝜀d), the granular assembly under-

went a localized mode of failure with the development of an intense shear band

after failure took place. The deviatoric strain field was computed based on particle

displacements at the stress-strain states (2) to (6) (see Fig. 1a) with respect to the

isotropic state.

Table 1 Physical and mechanical properties of the two-dimensional numerical model h, w, e and

z denote respectively the height, width of the specimen, the void ratio and the coordination number

at isotropic state. D, 𝜌 and Dm denote respectively the particle diameter, the mass density and the

mean diameter of two particles in contact

h∕w e z D (mm) 𝜌 (kg m
−3

) kn∕Dm (GPa) kt∕kn 𝜇

1.00 0.168 4.3 2–18 3,000 3.6 0.42 0.7
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Fig. 1 a Evolution of the deviatoric stress q and volumetric strain 𝜀v in terms of the axial strain

𝜀1, b deviatoric strain fields at states (2) to (6)

3 Spatial Distribution of Plastic Work

The deviatoric strain fields show that strain localization emerges before the limit

stress state is reached (peak of q). Narrow zones of localized strain (slip planes) with

various intensities can be observed at state (2) to (4). At their onset, they appear

local and tiny (see for instance state (2)), subsequently they grow wider, duplicate and

spread across the whole specimen along two opposite main directions as q increases.

These two main directions are well-known and defined by the internal (macroscopic)

friction angle of the granular assembly.

The slip planes can be also detected by considering the distribution of plastic

work (Wpl) resulting from particles sliding within the specimen. Figure 2a shows the

distribution of the mean plastic work per elementary cell at state (3). The cells are

equal in size and they enclose 6 × 6 particles on average. The highest values of the

plastic work are found to be located within the slip planes, which means that slid-

ing between contacts are more concentrated within the slip planes compared to the

rest of the specimen. By joining with lines the centers of cells for which Wpl > Wpl,

where Wpl is the mean value of the plastic work, one can characterize the potential

slip planes as shown in Fig. 2b where also the deviatoric strain field is superimposed.

A good agreement is found between the slip planes characterized by both deviatoric

strain fields and zones of highest densities of plastic work. Being linked to the zones

of highest plastic dissipation, the development of potential slip planes can be con-

sidered as part of the shear band formation process where it was shown (see [8]) to

involve the majority of inter-particle sliding occurrences.
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(a) (b)

Fig. 2 a Density of the plastic work (Wpl) within the specimen, the marker size is proportional

to the intensity of Wpl, b line-built slip planes linking the centers of cells for which Wpl > Wpl
(superimposed with the deviatoric strain fields)

In the next section, the development of slip planes will be analyzed from a meso-

structural viewpoint by examining the stress evolution and the spatial distribution of

the n-cycles.

4 Evolution and Spatial Distribution of N-Cycles

The investigations made in this section are based on the evolutions of the minimal

polygonal loops (n-cycles) with respect to their sizes. The minimal loops are defined

by the minimal set of particle pairs in contact having their branch vectors forming

a closed path. As such, they are representative samples of the granular assembly

mesoscopic structure and their evolution mainly accounts, among others, for parti-

cles rearrangement and the variation of the elementary void volume they enclose.

Figure 3a shows the evolution of the number of n-cycles (denoted henceforth by

Cn, where n is the size of the cycle) in terms of 𝜀1 during the biaxial compression.

Before the limit stress state is reached, a continuous increase of very large (C9 and

above) and large (C6 to C8) loops is observed while, irrespectively, a continuous

decrease is observed in the number of small and medium size loops (C3 to C5). It is

worth noting that the increase in the number of a given set of large loops is delayed

with respect to the previous set. Such dependency reveals that the growth process of

n-cycles is gradual and continuous.

Figure 3b shows the spatial distribution of large loops within the specimen at

states (4) and (6). In accordance with findings in [3], it is found that the large loops

are concentrated within localized strain zones prior to failure and within the shear

band later. Moreover, the steady increase of large loops is responsible for to the

intensification of slip planes and volumetric behavior change (see Fig. 1).

In contrast to their modest presence compared to the medium and small cycles,

the role played by large cycles toward the development of the shear band is crucial

if the normalized stress deviator q∕p, where p = (𝜎1 + 𝜎2)∕2, were to be examined

at n-cycles level.
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(a) (b)

Fig. 3 a Evolution of the number of n-cycles during loading, b spatial distribution of large n-

cycles, C6, C7 (blue) and C8+ (red), within the specimen at states (3) and (6)

(a) (b)

Fig. 4 a Comparison between the normalized stress deviator q/p based on principal stresses com-

puted at boundaries and those computed at n-cycles level, b Evolution of q/p within small, medium

and large size loops during loading

In order to compute the stress tensor components at n-cycles level, the stress ten-

sor is first calculated at the particle level [9], i.e., 𝜎
p
ij = −1

v

∑
c∈p f

c
i x

c
j , where v is the

volume associated to the particle, f̄c is the contact force and x̄c is the position of the

contact point. The volume of the particle v includes both a solid part (vs) and a void

part (vv). This latter is computed based on the total void volume within the speci-

men and weighted for each particle with respect to its solid volume vs. Thereafter,

the stress tensor is computed as the average stress tensor of particles involved within

the n-cycle i.e., 𝜎
Cn
ij = 1

n

∑
p∈Cn

𝜎
p
ij , where n denotes the number of particles involved

within the n-cycle. According to Fig. 4a, a good agreement was found between the

stress tensor computed at boundaries and the one computed at n-cycles level.
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(a) (b)

Fig. 5 a Evolution of the number of floating particles during the biaxial compression, b devel-

opment of typical large n-cycles during and at the approach of failure, the thickness of the branch

vectors is proportional to the intensity of the normal force

Figure 4b shows that the normalized stress deviator is higher for large loops com-

pared to smaller ones. Such result ensues due to the nature of the loops growth

process. At the beginning of the compression, the granular assembly discards the

contacts whose normals coincide with the lateral direction to build larger cycles

elongated in the direction of the axial loading so as to resist the axial loading. As

these loops grow, they lose confinement due to more losses of horizontal contacts

during loading; thus a higher stress deviator is obtained as the current n-cycle set

moves to the next higher set. At the approach of the peak, the largest loops are the

first to lose shear strength resulting from low confinement caused by the depletion of

smaller loops although that they rise with a higher one compared to the rest of loops.

They are also the ones to host floating particles excluded by the granular assembly in

order to undergo large deformations (see Fig. 5a). Figure 5b shows a brief develop-

ment process of two typical mesoscopic structures constituting the slip planes and/or

the shear band. A C9 and a C10, both enclosing, upon their full development, a set of

floating particles. These comprised particles preventing the sudden collapse of large

cycles during such non-effective failure.

5 Conclusion

In this study, a discrete element model representing a dense dry sand was consid-

ered in order to achieve a localized failure resulting into the appearance a well-

marked shear band. In view of the findings presented in this paper, potential slip

planes, emerging before failure, were shown to encounter similar energetic and meso-

structural aspects during their development process likewise those observed during

shear banding. The highest concentrations of plastic dissipation were proven to be
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located only within the dominant slip planes which ultimately lead to the develop-

ment of the shear band. The n-cycles based investigations not only showed that the

void ratio is higher within such slip planes compared to the rest of the specimen, but

also provided a comprehensive description of the mesoscopic shear strength evo-

lution toward the full development of the shear band by virtue of the stress tensor

computed at the n-cycles level.

Acknowledgements This work is jointly funded by the Natural Science and Engineering Council

of Canada and the Foundation Computer Modeling Group (FCMG).

References

1. Kuhn, M.R.: Structured deformation in granular materials. Mech. Mater. 31(6), 407–429 (1999)

2. Walker, D.M., Tordesillas, A.: Topological evolution in dense granular materials: a complex

networks perspective. Int. J. Solids Struct. 47(5), 624–639 (2010)

3. Zhu, H., Nicot, F., Darve, F.: Meso-structure organization in two-dimensional granular materials

along biaxial loading path. Int. J. Solids Struct. 96, 25–37 (2016)

4. Tordesillas, A., Lin, Q., Zhang, J., Behringer, R.P., Shi, J.: Structural stability and jamming of

self-organized cluster conformations in dense granular materials. J. Mech. Phys. Solids 59(2),

265–296 (2011)

5. Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique

29(1), 47–65 (1979)

6. Šmilauer, V. et al.: DEM formulation. Yade Documentation, 2nd edn. The Yade Project. http://

yade-dem.org/doc/ (2015)

7. Cundall, P.A.: A computer model for simulating progressive large scale movements in blocky

rocky systems. In: Proceeding of the Symposium of the International Society of Rock Mechan-

ics, pp. 129–136. Nancy, France (1971)

8. Hadda, N., Sibille, L., Nicot, F., Wan, R., Darve, F.: Failure in granular media from an energy

viewpoint. Granul. Matter 18(3), 1–17 (2016)

9. Staron, L., Radjai, F., Vilotte, J.P.: Multi-scale analysis of the stress state in a granular slope in

transition to failure. Eur. Phys. J. E 18(3), 311–320 (2005)

http://yade-dem.org/doc/
http://yade-dem.org/doc/


www.manaraa.com

Hill’s Lemma of Homogeneity for Granular
Materials and Discrete Media

D. Caillerie

Abstract R. Hill, in Hill (J Mech Phys Solids 15:79–95, 1967) [1, p. 80], presents

a lemma (without any proof) which is often called Hill’s condition of homogeneity

in the literature. This lemma states that for homogeneous stress or strain boundary

conditions on a domain V , the average of the work developed by the divergence-free

stress field in the strain field is equal to the work developed by the mean stress in

the mean strain. The purpose of this paper is to present a generalization of the Hill’s

lemma to discrete media such as lattices or nets of beams or granular media and that

for different types of boundary conditions.

Keywords Hill’s lemma ⋅ Homogeneity ⋅ Discrete media ⋅ Granular materials

1 Introduction

Numerous papers of the literature aim at determining equivalent continuous model-

ings of discrete structures such as lattices of bars or networks of beams or granular

materials. One of the key points in those micro-macro processes is the definition of

equivalent stress and strain tensors in a discrete structure. Another key point is the

nature of the boundary conditions to be applied on a Representative Volume Element

in order to get a representative response of a homogeneous equivalent continuous

medium. This point arises also in continuum homogenization and many authors refer

to the Hill’s lemma as a condition of homogeneity to get a representative response

of an homogeneous medium. In this paper, we prove an equivalent Hill’s lemma for

discrete media for equivalent homogeneous stress or displacement gradient on the
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boundary of the medium. First the Hill’s lemma for continuous media is recalled in

Sect. 2 with the proof which is used to establish the equivalent lemma for discrete

media. In Sect. 3 is given a description of a generic discrete medium, then the defi-

nitions of equivalent mean stress and mean displacement gradient in discrete media

are recalled. The Hill’s lemma for discrete media is stated and proved in Sect. 3.4.

Notations
a⃗.⃗b is the scalar product of the vectors a⃗ and ⃗b. A@⃗b is the image of the vector ⃗b by

the linear application (second order tensor) A. AT
, resp. tr A, are the transposed ten-

sor, resp. the trace, of the tensor A. A◦B, resp. A ∶ B, are the composition product,

resp. the scalar product, of the second order tensors A and B; (A◦B) @a⃗ = A@
(
B@a⃗

)
,

A ∶ B = tr
(
A◦BT)

. a⃗ ⊗
⃗b is the tensor product of the vectors a⃗ and ⃗b defined by(

a⃗ ⊗
⃗b
)

@c⃗ =
(
⃗b.c⃗

)
a⃗ and tr

(
a⃗ ⊗

⃗b
)
= a⃗.⃗b. 𝕀 is the identity tensor. Let V be a

domain of either a 2D or 3D space, x⃗ is the space variable in V and 𝜕V denotes

the boundary of V . |V| being the volume (or surface in 2D) of V , ⟨ f ⟩ = 1
|V|

∫V f dv
is the mean value of the field f over V .

2 Hill Lemma for Continuous Media

Lemma 1 (Hill’s lemma) Let u⃗ and 𝜎 be a differentiable displacement field and a
divergence free stress tensor field defined in a domain V. If, on the boundary 𝜕V
either 𝜎 or u⃗, satisfies the conditions:

𝜎@n⃗ = Σ@n⃗ (1)

u⃗ = E@n⃗ (2)

Σ and E are constant 2nd order tensors and n⃗ is the outer normal to 𝜕V, then
⟨
𝜎 ∶ ∇u⃗

⟩
= ⟨𝜎⟩ ∶

⟨
∇u⃗

⟩
(3)

Because it is used to establish the lemma for discrete media, the proof of the Hill’s

lemma is given in what follows. It makes use of the following results:

∀𝜎, div 𝜎 = 0 , ⟨𝜎⟩ = 1
|V| ∫

𝜕V
𝜎◦

(
n⃗ ⊗ x⃗

)
ds (4a)

∀w⃗ ,

⟨
∇w⃗

⟩
= 1

|V| ∫
𝜕V

w⃗ ⊗ n⃗ ds (4b)

These results, as well as the Hill’s lemma, are based on the virtual power formulation

of the equation div 𝜎 = 0 which reads:
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∀w⃗ ,

∫V
𝜎 ∶ ∇w⃗ dv =

∫
𝜕V

(
𝜎@n⃗

)
.w⃗ ds =

∫
𝜕V

𝜎 ∶
(
w⃗ ⊗ n⃗

)
ds (5)

(4a), resp. (4b), are obtained by taking u⃗ = E@x⃗, resp. 𝜎 = Σ, in (5), E and Σ being

any constant 2nd order tensors (so div Σ = 0). Moreover, taking u⃗ constant, resp.

u⃗ = x⃗, in V in (4b) yields respectively:

∫
𝜕V

n⃗ds = 0 (6a)

1
|V| ∫

𝜕V
n⃗ ⊗ x⃗ ds = 1

|V| ∫
𝜕V

x⃗ ⊗ n⃗ ds = 𝕀 (6b)

Proof of the Hill’s lemma Taking 𝜎@n⃗ = Σ@n⃗ on 𝜕V in (4a) where Σ is a constant

2nd order tensor and using (6b), we get ⟨𝜎⟩ = 1
|V|

Σ◦ ∫
𝜕V n⃗ ⊗ x⃗ ds = Σ now, from (5)

with w⃗ = u⃗ we have:

∫V
𝜎 ∶ ∇u⃗ dv =

∫
𝜕V

(
Σ@n⃗

)
.u⃗ ds =

∫
𝜕V

Σ ∶
(
u⃗ ⊗ n⃗

)
ds = Σ ∶

∫
𝜕V

(
u⃗ ⊗ n⃗

)
ds

which, using (4b), yields (3).

Taking u⃗ = E@x⃗ on 𝜕V with E being a constant second order tensor and using

(6b), we get
⟨
∇u⃗

⟩
= 1

|V|
E ∶ ∫

𝜕V x⃗ ⊗ n⃗ ds = E now, from (5) with w⃗ = u⃗ we have:

∫V
𝜎 ∶ ∇u⃗ dv =

∫
𝜕V

(
𝜎@n⃗

)
.

(
E@x⃗

)
ds =

(

∫
𝜕V

𝜎◦
(
n⃗ ⊗ x⃗

)
ds
)

∶ E

which, dividing by |V| and using (4a), yields (3). ⊓⊔

3 Description of Discrete Media—Mean Stress
and Displacement Gradient

3.1 Equilibrium and Virtual Powers

The discrete media considered in this study are rather various, they can be nets of

bars or of beams, or granular materials (see Fig. 1 for an example of a lattice of bars).

The discrete media are assumed to be such that their equilibrium comes down to that

of a set of points, numbered by n, m, . . . , which interact by forces (and possibly by

torques in a granular medium or in a net of beams). Those points are named nodes

as in a lattice. Let B denote the set of the peripheral nodes (in red on Fig. 1).

Let ⃗f m∕n
be the force applied by the node m on the node n therefore ⃗f n∕m = −⃗f m∕n

.

The structure is loaded only on its peripheral nodes by forces denoted by ⃗f e∕n
. The
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Fig. 1 A lattice of bars—in red the set B of the peripheral nodes, in blue the (2D) facets forming

the boundary 𝜕V of the discrete medium

Fig. 2 The set of triangular

facets of the boundary of

which n is a vertex

exterior forces ⃗f e∕n
are supposed to be balanced by the interior forces ⃗f m∕n

, the virtual

power formulation of the corresponding equilibrium reads:

∀w⃗n
, −1

2
∑

(n,m)

⃗f m∕n
.

(
w⃗m − w⃗n) +

∑

n∈B

⃗f e∕n
.w⃗n = 0 (7)

where the first sum runs over the whole set of pairs (n,m) of interacting nodes; (m, n)
is different from (n,m) so the coefficient 1/2. Let  i = −1

2
∑

(n,m)
⃗f m∕n

.

(
w⃗m − w⃗n)

be

the inner virtual power.

Remark 2 From the previous equation, it is clear that the resultant force
∑

n∈B
⃗f e∕n

of the exterior forces ⃗f e∕n
has to be equal to 0.

We then define the boundary 𝜕V of the discrete medium by considering the tri-

angular facets of the—for instance Delaunay’s—tessellation of the peripheral nodes

of the medium (see Figs. 1 and 2). The domain V , of volume |V|, occupied by the

discrete medium is the domain bounded by 𝜕V . The triangular boundary facets that

form the boundary 𝜕V are numbered by f , their exterior normals are denoted by n⃗f

and there areas by Af
. The normal vectors n⃗f

define a piecewise constant exterior nor-

mal n⃗ to the boundary 𝜕V . Let S (f ) denote the set of the peripheral nodes (n ∈ B)

which are vertices of the triangular facet f and S−1 (n) denote the set of the facets f
of which n is a vertex.
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3.2 Equivalent Stress in Discrete Media

There are different ways to define the mean stress in a discrete medium, one way is

to draw inspiration form the mean stress in a continuous medium (4a) and set:

⟨𝜎⟩ = 1
|V|

∑

n∈B

⃗f e∕n
⊗ x⃗n

(8)

That expression can be obtained by taking w⃗n = E@x⃗n
in (7) (E being constant) and

by identifying the inner virtual power  i
with that of the continuum, which leads to

equivalently define the mean Cauchy stress by ⟨𝜎⟩ = 1
2
∑

(n,m)
⃗f m∕n

⊗

(
x⃗m − x⃗n)

.

3.3 Mean Displacement Gradient in Discrete Media

Analogously to what is done in Sect. 3.2, the average displacement gradient can be

define by drawing inspiration from the relation (4b). That relation needs the displace-

ment to be defined at least on the discrete medium boundary 𝜕V as an extension of

the displacements of the peripheral nodes, for that those displacements are interpo-

lated on the facets. Let w⃗l
, w⃗m

and w⃗n
be displacements of the vertices l,m, n of the

facet f , the interpolation on f reads w⃗
(
x⃗
)
= Nl (x⃗

)
w⃗l + Nm (

x⃗
)

w⃗m + Nn (x⃗
)

w⃗n
, the

N’s functions are degree one polynomials such that Nj (x⃗j) = 𝛿ij , i, j = l,m, n with

x⃗l
, x⃗m

and x⃗n
being the positions of the vertices of the facet. A calculation of the

integrals ∫f Nj (x⃗
)
ds, i = l,m, n shows that:

∫f
w⃗ ds = Af

3
∑

n∈S(f )
w⃗n

(9)

According to the relation (4b), we defined the average displacement gradient in the

discrete media by:

⟨
∇w⃗

⟩
= 1

|V| ∫
𝜕V

w⃗ ⊗ n⃗ ds = 1
|V|

∑

f⊂𝜕V
∫f

w⃗ ⊗ n⃗f ds = 1
|V|

∑

f⊂𝜕V

(

∫f
w⃗ ds

)
⊗ n⃗f

(10)

that is to say, from (9),
⟨
∇w⃗

⟩
= 1

3|V|

∑
f⊂𝜕V Af

(∑
n∈S(f ) w⃗n

)
⊗ n⃗f

which yields

⟨
∇w⃗

⟩
= 1

|V|

∑
n∈B w⃗n

⊗

1
3
∑

f∈S−1(n) Af n⃗f
and which can be written:

⟨
∇w⃗

⟩
= 1

|V|

∑

n∈B
w⃗n

⊗
⃗An

(11)
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where the mean surface vector ⃗An
at node n is defined by:

⃗An = 1
3

∑

f∈S−1(n)
Af n⃗f

(12)

Remark 3 We have
∑

n∈B
⃗An = 0 indeed

∑
n∈B

⃗An = 1
3
∑

n∈B
∑

f∈S−1(n) Af n⃗f
, that is

to say
∑

n∈B
⃗An = 1

3
∑

f⊂𝜕V
∑

n∈S(f ) Af n⃗f
which, as Af n⃗f

does not depend on n ∈ S (f ),
reads

∑
n∈B

⃗An =
∑

f⊂𝜕V Af n⃗f
. Now, taking (6a) into account, it comes

∑
n∈B

⃗An =
∑

f⊂𝜕V ∫f n⃗ ds = ∫
𝜕v n⃗ ds = 0.

3.4 Hill’s Lemma for Discrete Media

Lemma 4 Let u⃗n be the displacements of the nodes of the discrete medium and ⃗f m∕n

be forces between these nodes balancing the exterior forces ⃗f e∕n and let |V| be the
volume of V (see Sect. 3.1). If, on the nodes of the boundary B of the medium the
applied exterior forces ⃗f e∕n, resp. the displacements u⃗n satisfy the conditions:

∀n ∈ B, ⃗f e∕n = Σ@⃗An resp. (13a)

∀n ∈ B, u⃗n = E@x⃗n
(13b)

Σ and E being two constant second order tensors and ⃗An being by (12), then

1
|V|

1
2
∑

(n,m)

⃗f m∕n
.

(
u⃗m − u⃗n) = ⟨𝜎⟩ ∶

⟨
∇u⃗

⟩
(14)

which means that the mean of the internal work is equal to the work of the means of
the stress and of the gradient of u⃗.

Proof Let’s begin with the condition (13a) on the stress. Σ being a stress tensor,

we consider external forces ⃗f e∕n
being given on peripheral nodes by ⃗f e∕n = Σ@⃗An

.

According to the Remark 3 (Sect. 3.3), the resultant of all these forces is equal to

zero ensuring that the exterior forces ⃗f e∕n
can be balanced by interior forces ⃗f m∕n

(see the Remark 2). From the definition of the equivalent mean stress (8), we have

|V| ⟨𝜎⟩ =
∑

n∈B
⃗f e∕n

⊗ x⃗n = Σ◦
∑

n∈B
⃗An

⊗ x⃗n
now, using the same calculation as

that of Sect. 3.3 for the definition of
⟨

w⃗
⟩

, we get |V| ⟨𝜎⟩ = Σ◦ ∫
𝜕V n⃗ ⊗ x⃗ ds which,

according to the relation (6b) proves that:

|V| ⟨𝜎⟩ = Σ (15)



www.manaraa.com

Hill’s Lemma of Homogeneity for Granular Materials and Discrete Media 473

The formulation (7) for w⃗n = u⃗n
reads

1
2
∑

(n,m)
⃗f m∕n

.

(
u⃗m − u⃗n) = Σ ∶

∑
n∈B u⃗n

⊗

⃗An
which, according to the definition (11) for w⃗n = u⃗n

and the Eq. (15) entails

1
|V|

1
2
∑

(n,m)
⃗f m∕n

.

(
u⃗m − u⃗n) = ⟨𝜎⟩ ∶

⟨
∇u⃗

⟩
.

Now, let’s consider displacements on B such that ∀n ∈ B , u⃗n = E@x⃗n
. From (11)

for w⃗n = u⃗n
we then have

⟨
∇u⃗

⟩
= 1

|V|
E◦

(∑
n∈B x⃗n

⊗
⃗An
)

which, using Eq. (11) for

w⃗n = x⃗n
, reads: ⟨

∇u⃗
⟩
= E (16)

The formulation (7) for w⃗n = E@x⃗n
reads

1
2
∑

(n,m)
⃗f m∕n

.

(
u⃗m − u⃗n) =

(∑
n∈B

⃗f e∕n
⊗ x⃗n

)
∶ E which according to the definition (8) and the Eq. (16) reads

1
|V|

1
2

∑
(n,m)

⃗f m∕n
.

(
u⃗m − u⃗n) = ⟨𝜎⟩ ∶

⟨
∇u⃗

⟩
. ⊓⊔
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Framework for Multiscale Flow Simulation
of Deformable Rocks

Martin Lesueur, Maria Camila Casadiego, Thomas Poulet
and Manolis Veveakis

Abstract A Finite Element implementation is presented to solve for Stokes flow on

a deformable rock matrix reconstituted from a stack of computerized tomography

images. Tightly coupling this flow solution with a mechanical deformation model

exhibits the hydro-mechanical evolution of permeability in a fully saturated rock

under compression. The scope of the presented micro-scale computation of perme-

ability is demonstrated through a multi-scale simulation of pore pressure progression

within a petroleum reservoir under production.

1 Introduction

When coupling rock deformation with fluid flow through porous media considera-

tions, the solid matrix permeability is a key parameter for hydro-mechanical instabil-

ities [12]. It is therefore of primordial importance to have a framework for computing

evolving permeability in a deforming matrix for any type of fluids. Such calcula-

tions of permeability can be efficiently performed directly from micro-tomographic

images [10]. This technique provides a more accurate estimation of permeability

than semi-analytical models like Carman [4], removing the uncertainties introduced

by the empirical nature of the scaling factors used to fit the experimental data [1].

Permeability is a homogenised quantity that is only valid at the macro-scale, but

is obtained through the upscaling of the Navier-Stokes equations at the micro-scale.

Various numerical techniques have been implemented successfully to estimate per-

meability from digital porous rocks. These techniques use numerical schemes like

the Finite Element (FEM) [3], Finite Difference [10], Finite Volume [7], or Lattice

Boltzmann (LBM) [9] methods. Methods like LBM are extremely efficient numer-

ically but not necessarily extensible to include more physical processes. FEM, on
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the other hand, provides a way to deal with complex pore geometries and boundary

conditions, this allows a rigorous solution of the Navier-Stokes equations [14] and

enables it to handle more complex equations to include additional physical processes.

In this contribution we present a fluid flow module implemented in the RED-

BACK simulator [11] that provides a framework to run multiphysics simulations

across multiple scales.

2 Flow Simulator

We consider a porous rock at the micro-scale composed of a solid matrix and pore

space, which contains a single-phase incompressible fluid. In this section we present

the underlying system of governing equations and their numerical implementation

within the fluid simulator to compute the permeability of digital rocks.

2.1 Theoretical Model

The flow in the pore space is governed by the Navier-Stokes equations [2]. In order to

compute permeability, we restrict this study to the case of steady-state laminar flow.

Based on these assumptions, the system reduces to the traditional Stokes equations

and can be brought to a dimensionless form by introducing the following normalised

quantities:

p∗f =
pf Lref
𝜇f vf ,ref

, vf ∗ =
vf

vf ,ref
, Re =

𝜌f vf ,ref Lref
𝜇f

(1)

where 𝜌f denotes the fluid density, 𝜇f the fluid viscosity, pf the fluid pressure, vf the

fluid velocity, and Re the Reynolds number. Lref , vf ,ref are reference quantities for the

normalisation. The dimensionless system becomes

− 1
Re

∇ ⋅ 𝝈f
∗ + ∇p∗f = 0, (2)

∇ ⋅ vf ∗ = 0, (3)

with 𝝈f
∗ = [∇vf ∗ + (∇vf ∗)T ]−

2
3
(∇ ⋅ vf ∗)I (4)

where 𝝈f denotes the fluid stress tensor for a newtonian fluid (Eq. 4). Equation 2

expresses the momentum balance in the case of laminar, steady-state flow and Eq. 3,

the mass balance simplified with the assumption of incompressibility.
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2.2 Numerical Model

The dimensionless system of Eqs. 2–4 is implemented with a finite element scheme

using the open-source REDBACK simulator [11]. REDBACK is based on the Mul-

tiphysics Object-Oriented Simulation Environment (MOOSE) [6], which allows a

parallel resolution of equations in a tightly coupled manner. In this study we take

advantage of several of MOOSE’s functionalities. Firstly, its modularity enables the

coupling of different physical simulators in an efficient manner. Secondly, it sup-

ports a wide range of mesh elements and mesh adaptivity; this is particularly conve-

nient when working on reconstituted meshes from a stack of computed tomography

(CT) scan images. Thirdly, the multi-app functionality allows loose coupling to be

performed easily by automatically handling the passing and interpolation of inputs

and outputs between the various simulations. The accuracy of the flow simulation

was benchmarked successfully against the analytical solution of Poiseuille flow in a

cylindrical tube.

3 Permeability Computation on Deformable Digitised
Rocks

3.1 Permeability Calculation

We use the Redback implementation presented above to compute the permeability of

a rock sample at the micro-scale. Steady-state flow is computed by applying no-slip

boundary conditions at the rock-fluid interface and at the sample’s boundaries. We

impose a pressure-driven flow by setting a higher pressure at a chosen inlet and a

lower pressure at the corresponding outlet. Most samples considered are cubic and

the inlet and outlets are selected on opposite faces. A low-pressure difference, of

𝛥p∗ = 1, is convenient to remain in the laminar regime.

Darcy first introduced the concept of permeability in 1856 [5] as an empirical

quantity, k, which related the fluid flow with the applied pressure gradient, to describe

the concept of hydraulic conductivity. Darcy’s law was eventually proven to be a

homogenisation of the Navier-Stokes equations [13], under a strict set of conditions.

Permeability can be derived from the definition of the superficial fluid velocity vfs
expressed as

vfs =
k𝛥pf
𝜇f Lref

(5)

Note that vfs, the apparent fluid velocity of a porous volume, does not represent the

norm of vf but its projection on the overall flow direction.
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vfs = 𝜙∫
𝛺

vf .n (6)

Consequently, we compute permeability through the following expression

k = L2ref
𝜙 ∫

𝛺
vf ∗.n

𝛥p∗f
(7)

This computed permeability provides a single average value, over the whole volume,

for any given direction along the vector n.

3.2 Handling Deformable Digitised Rocks

In this section we present a qualitative example to illustrate the capacity of this frame-

work to capture the evolution of permeability in a fully saturated rock sample under

compression. We couple the flow simulation module presented above with other Red-

back modules to simulate flow within a deformable rock matrix reconstituted from a

stack of CT images. We model a triaxial experiment on a cubic sample of carbonate

under compression at a constant velocity. We consider an elasto-visco-plastic behav-

iour of the rock with a von Mises yield criterion. The compression is considered to

be slow enough for the deformation to remain quasi-static, in this way the flow can

be solved in steady-state for each mechanical time step. The flow simulation and

mechanical deformation are solved simultaneously in a tightly coupled manner.

Fig. 1 Two time steps of a Hydro-Mechanically coupled simulation on a carbonate under com-

pression, showing high stresses building up over time at the chain force. The fluid flow is displayed

with streamlines. The sample is meshed with 30000 elements
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Figure 1 displays two frames of the simulation at different times to show the evo-

lution of the Mises stress during the experiment. It is seen how the sample reaches

plasticity in localised areas, mostly at the chain force. The pore throats are slightly

reduced in those areas, affecting the overall recomputed permeability of the sample.

Given that the initial porosity of this sample is high (25.9%), those changes remain

imperceptible over the short duration of the experiment; this was run for illustration

purposes.

4 Multi-scale Simulation

The computation of permeability at the micro-scale can be inserted in a mutli-scale

framework using MOOSE’s mutli-app functionality. We demonstrate this feature and

the framework developed by simulating the pore pressure evolution within a petro-

leum reservoir under production. The reservoir consists of two horizontal layers with

distinct geological fabrics, which are represented by using a characteristic sample at

the micro-scale for each of them. We investigate the pressure build-up scenario that

results from a production well across both layers. For this purpose, we consider a 2D

vertical cross section flanked by an injector well on the left hand side. The injection

is modelled by applying a normalised excess pore pressure of p∗f = 1, compared to

the initial normalised pore pressure of p∗f = 0, over the whole model.

The material chosen for the upper layer is the sandpack sample LV60A [8], with a

computed porosity and permeability of 35.7% and 8.5 D respectively. For the lower

layer, a carbonate sample with computed porosity of 27.6% and 123 mD permeabil-

ity. The upscaling is performed in a sequential manner through MOOSE’s multi-app,

where the permeability of each sample is recomputed at each step. Figure 2 shows a

snapshot of the reservoir pore pressure after enough time for the two layers to exhibit

different behaviours. The pore pressure is naturally diffusing faster in the upper layer.

Fig. 2 (Center) Pore pressure map of the vertical reservoir cross-section with two horizontal layers

after some injection time. (Left) Velocity field of the carbonate sample characteristic of the lower

layer. (Right) Velocity field of the sandpack sample characteristic of the upper layer
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5 Conclusion

The framework presented opens the door for a new type of studies to understand the

permeability evolution in deformable porous rocks. It provides the means for other

physical processes to be coupled (tightly or not) to the flow simulator and facilitates

investigations across different length scales. These features are particular important

to study complex mechanisms and hydromechanical instabilities like fault reactiva-

tion, where the microstructural geometry and the macroscopic behavior are critically

linked. During such slip events, permeability has been shown to evolve drastically

[11] and increase by several orders of magnitude. Consequently, when a fault reacti-

vates, it can cause pressure equilibration in deep petroleum reservoirs, across faults

that were known to be initially impermeable.
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Localized Compaction in Tuffeau
de Maastricht: Experiments and Modeling

A. Papazoglou, G. Shahin, F. Marinelli, C. Dano, G. Buscarnera
and G. Viggiani

Abstract This paper presents an experimental and constitutive study of compaction

banding in Tuffeau de Maastricht, a bioclastic sedimentary limestone exhibiting up to

52% of porosity. An elasto-plastic constitutive model is used to simulate the mechan-

ical behavior of the limestone within the compaction localization regime. It is shown

that the simulated macroscopic behavior is in good agreement with the experimen-

tal data. In addition, image processing tools have been used to perform full-field

measurements elucidating the mechanics of initiation and propagation of localized

compaction zones. These findings emphasize the complex nature of localized com-

paction in porous rocks and represent a preliminary step towards the integrated use of

multi-scale testing and mechanical modeling for their characterization across scales.

1 Introduction

Compaction bands have been observed in different kinds of materials (e.g., rocks,

soils, metallic foams, cellular materials). They are usually promoted by a relatively

high porosity, as well as by high mean stress levels. However, the inelastic mecha-

nisms controlling localized compaction at the micro-scale can differ from one mate-

rial to another. For instance, buckling of thin walls has been observed in metallic

foams or honeycomb structures. In the case of geomaterials, due to their natural vari-

ability, the microstructural origin of compaction localization is still an open ques-

tion, often complicated by the coexistence of multiple inelastic processes (e.g., pore
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collapse, grain crushing, degradation of cementation bonds). Full-field non destruc-

tive measurements have thus the potential to identify these micro-mechanisms and

assess their relative role.

2 Material Tested and Experimental Set-Up

The material studied in this work is Tuffeau de Maastricht, a limestone that was

formed by sediments transported and deposited in a marine environment during the

Late Cretaceous [2, 3]. The material microstructure consists of carbonate bioclasts

and shell fragments. Although the average grain size is about 100–200 µm, bigger

fossils and inclusions can also be observed. Such constituents are bonded together

by a weak cementation, which mainly occurs at contact points around echinoderm

bioclasts. The pore structure of Tuffeau de Maastricht is characterized by high poros-

ity (up to 52%), which is mainly due to the intragranular porosity within the shell

fragments (see Fig. 1) [5, 6]. The weak cementation, combined with the high poros-

ity, results in a soft rock with low stiffness and strength (unconfined compressive

strength is less than 5 MPa) [11]. Figure 1 illustrates the complex structure of the

selected rock at the micro scale, where both intergranular voids and bioclasts can be

recognized (black color corresponds to pores).

The testing campaign consisted of an isotropic compression test and a number

of triaxial compression tests on dry specimens. For this purpose, cylindrical speci-

mens of 2:1 height-diameter ratio and 10 mm diameter were prepared and tested in

a miniaturized triaxial compression apparatus allowing for in situ X-ray scans with

a voxel size of 13µm. Note that since the specimens were tested dry, the volumetric

strain was directly measured from the 3D images obtained throughout the tests. The

isotropic compression test was conducted by increasing step-by-step the confining

pressure. The response obtained in the plane mean stress (p)—volumetric strain (𝜀v)

can be divided in two segments. The first segment is quasi-linear until a limit stress,

at which a sudden reduction in volume is observed (see Fig. 3a).

Fig. 1 CT scan of Tuffeau

de Maastricht at 1µm

resolution, revealing

intragranular porosity and

bioclasts variability
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Fig. 2 Curves of deviator stress (q = 𝜎a − 𝜎r) versus axial strain obtained from triaxial compres-

sion experiments at different confining pressures

The triaxial tests were performed at different confining pressures ranging from 0
(no confinement) to 4.0 MPa (see Fig. 2). Loading was interrupted at various points

and X-ray scans were performed. The radiographs obtained were then used to recon-

struct 3D tomographic volumes. In addition to the compression tests reported in

Fig. 2, a further experiment at 4.0 MPa confinement was conducted, to a much higher

axial strain (almost 50%). Figure 5a shows the deviator stress versus axial strain, as

well as the volumetric response of the material. The material exhibits an initial lin-

ear phase portion and then a plateau of deviator stress. After 14% axial strain, the

deviator stress starts to increase again.

3 Constitutive Modeling

A constitutive model based on earlier contributions by Nova et al. [7, 9, 12] is here

selected to reproduce the plastic collapse occurring in high-porosity rocks under

isotropic and/or shear loading. Yield surface f and plastic potential g are expressed

as follows [9]:

f
g

}
=

p
p⋆c

−

(
1 + 𝜂

⋆

MhK2

) K2
(1−𝜇h)(K1−K2)

(
1 + 𝜂

⋆

MhK1

) K1
(1−𝜇h)(K1−K2)

𝜂
⋆ =

q
p + pt

(1)
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K1∕2 =
𝜇h

(
1 − 𝛼h

)
2
(
1 − 𝜇h

)
⎛⎜⎜⎝
1±

√√√√1 −
4𝛼h

(
1 − 𝜇h

)
𝜇h

(
1 − 𝛼h

)2
⎞⎟⎟⎠
, (2)

These functions are characterized by distinct sets of shape parameters Mh, 𝜇h, and

𝛼h (with the subscript h referring to either f or g). The size of the yield surface is

governed by the parameter p⋆c = ps + pm + pt, where ps reflects the state of mater-

ial compaction, while pm simulates the effect of inter-particle bonding. Finally, pt,
which defines the tensile strength of the material, is assumed to be proportional to

pm (i.e., pt = 𝜅 pm). The mechanical response within the yield surface has been sim-

ulated with isotropic linear elasticity, while the hardening/softening characteristics

are governed by the following equations:

ṗs =
ps
Bp

�̇�
p
v ṗm = −𝜌mpm(|�̇�pv| + 𝜉m�̇�

p
q) (3)

where Bp, 𝜌m and 𝜉m are constitutive parameters. From Eq. 3 it can be readily noted

that the interplay between the hardening of ps in the compaction regime and the

reduction of pm may result in either contraction or expansion of the yield surface.

An isotropic compression test has been used to calibrate Bp and 𝜌m (Fig. 3a).

Given the lack of data about the isotropic hardening of the Tuffeau de Maastricht

at high pressures, the value of Bp has been defined on the basis of evidences avail-

able for a calcareous rock of similar porosity (i.e., the Gravina calcarenite tested

by Lagioia and Nova [8]). This choice has allowed us constraining the plastic com-

pressibility of the fully destructured material, as well as the magnitude of 𝜌m and the

initial values of pm and ps. The shape parameters of the yield function (i.e., 𝛼f , 𝜇f ,

Mf and 𝜅 in Fig. 3a have been calibrated by fitting the yielding points extracted from

Fig. 2), and the resulting function is depicted in Fig. 3b. Finally, the shape parameters

of the plastic potential (𝜇g, 𝛼g, and Mg) have been defined by means of the dilatancy

Fig. 3 Calibration of a the hardening parameters, and b initial yield surface. The values of the

calibrated parameters are given in the relevant plot
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Fig. 4 Calibration of the dilatancy function d(𝜂⋆) by using the experimental data plotted in Fig. 5a

(the dilatancy function corresponding to associative plasticity is also plotted for comparison pur-

pose)

Fig. 5 Comparison between experimental data (a) and numerical results (b) for a triaxial test

performed at 4.0 MPa of confinement pressure; simulation performed with G = 80MPa and

𝜉m = 0.0

function d = d(𝜂⋆), i.e., the ratio between the increments of volumetric and devi-

atoric plastic strains. Data used for this purpose is extracted from the triaxial test

in Fig. 5a. The results are illustrated in Fig. 4 where, for comparison purposes, the

d(𝜂⋆) relationship which would result from the use of an associated plastic flow rule

is also reported. This comparison emphasizes the pronounced non-associativity of
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the Tuffeau de Maastricht, which usually underscores a non-negligible potential to

develop strain inhomogeneity.

The performance of the calibrated model has been tested by simulating a triaxial

test at 4.0 MPa confining pressure. The computed material point response in Fig. 5b

can be compared to the corresponding experimental result in Fig. 5a. It can be readily

noted that by adequately constraining the proportion between hardening and soften-

ing terms it is possible to simulate realistically the transition from a perfectly plastic

flow in the vicinity of the yielding point to a considerable re-hardening at larger

strains. Despite such satisfactory agreement between data and computations, it is

worth remarking that this comparison is based on a material-point assessment of the

rock response. As a result, it should be regarded as a first-order approximation of

the constitutive properties susceptible to further refinements based on the detailed

full-field observations discussed in the next section.

4 Measured Fields of Porosity and Incremental Strain

Although the numerical model captures the global mechanical response of the mate-

rial, the characterization of local inelastic processes requires a more detailed inspec-

tion. For this purpose, image analysis was performed on the triaxial test at a 4.0 MPa

confining stress, to track the initiation and evolution of localized compaction during

the above mentioned compression experiments.

In this work, the porosity was measured locally by working on image gray-scale

level through sub-volumes defined within the reconstructed images. These measure-

ments, obtained using a code developed by Andò [1], represent the volume of the

voids within the sub-volume. The appropriate (representative) sub-volume size has

been decided by analyzing the measurements of porosity and its fluctuations as a

function of the sub-volume size. Since the measurements become less sensitive to

the cube size and converge to the global porosity of the specimen as the size of the

sub-volume increases, a fixed value of 55 voxels has been chosen as representative

elementary volume (REV).

3D Digital Image Correlation (DIC) was also performed to measure the evolu-

tion of strain field in the specimen while it deforms under loading, using the code

“TomoWarp2” (see [13] for details).

Figure 6 shows vertical slices of the 3D strain maps obtained with DIC. The scalar

quantity mapped in the figure is the maximum shear strain. Note that this is incremen-

tal. The localization appears at the bottom and top of the specimen before the peak

at 2–3% of axial strain and extends towards the middle. The porosity map (Fig. 7)

indicates the initial high porosity of the material and its evolution during the loading.

This densified zone starts from the bottom and top and increases in thickness until

it covers the whole specimen. At the end of the deviator stress plateau at 14% axial

strain, the entire specimen has a porosity of 38%. It should be noticed that the strain
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Fig. 6 Vertical slices in different increments of stain, results of the 3D-DIC in terms of maximum

shear strain

Fig. 7 Vertical slices through the measured 3D field of porosity in different configuration of the

triaxial compression test at 4.0 MPa confining pressure. Note that the porosity decreases up to 26%

from the initial value (52–38%)

maps clearly point out that the propagation of localized compaction zones coincides

with the initial plateau of deviator stress, while the achievement of a homogeneously

compacted state marks the onset of re-hardening.

5 Discussion and Conclusions

Localized compaction in Tuffeau de Maastricht has been studied through experi-

ments and constitutive analyses. Triaxial compression tests conducted at different

confining pressures have generated a post-yielding response characterized by nearly

constant deviator stress and considerable compaction. It has been shown that the

continuation of the compression test beyond the post-yielding plateau causes a tran-

sition from a perfectly plastic stage to a noticeable re-hardening. These evidences

have been interpreted through an elasto-plastic model relying on feedbacks between

plastic compaction (hardening terms) and loss of structure (softening terms). The

proportion between such feedbacks has been constrained through evidences of plas-

tic collapse under isotropic conditions, thus generating a set of parameters repro-

ducing successfully the transition from perfectly plastic flow to compaction-driven
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re-hardening. Such satisfactory agreement between data and computations has been

achieved by enforcing plastic non-normality in the cap region, i.e., a feature which

usually underpins a non-negligible potential for strain inhomogeneity. The latter pos-

sibility has been assessed by full-field measurements collected by X-ray imaging and

3D-DIC, which identified successive formations of compaction bands moving from

the boundaries towards the center of the sample until achieving a uniformly com-

pacted state which precedes the onset of re-hardening. Such findings illustrate the

complex nature of the processes that characterize the response of porous rocks such

as the Tuffeau de Maastricht, thus warranting further analyses elucidating the micro-

scopic origin of localized compaction in this material, as well as the enhancement of

their constitutive description through microstructural attributes reflecting the alter-

ation of their pore networks.
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Strain Localisation in Sand in Cycles
of Triaxial Compression and Extension:
Continuum and Grain-Scale Analysis

E. Andò, E. Salvatore, J. Desrues, P. Charrier, J.-B. Toni, G. Modoni
and G. Viggiani

Abstract In this work we present selected results from a recent experimental pro-

gramme where small sand specimens are subjected to cycles of triaxial compression

and triaxial extension: the material is “yielded” in extension, after which the load-

ing is reversed and the material is “yielded” in compression—a number of cycles

are performed. The ways in which extension and compression-like localisation pat-

terns (i.e., dilatant shear banding, and necking respectively) appear, get activated and

disactivated on reversal of loading are measured, and discussed—in terms of both

(continuum) strain fields and individual grain rotations.

1 Introduction

X-ray tomography has been used with great success, since the end of the 80s to reveal

3D structures and processes in geomaterials. At the beginning of this adventure,

spatial resolution in medical x-ray scanners was not sufficient to resolve individual

sand grains, however important findings regarding the local significance of the value

of critical state void ratio were made.

Since some years, both synchrotrons and laboratory x-ray scanners offer high res-

olutions and the possibility to perform experiments during x-ray scanning. The usual

trade-off between spatial resolution and field-of-view still applies, so to take advan-

tage of the gain in spatial resolution, experiments have had to be miniaturised—in

our case specimens of sand for triaxial compression have been reduced to cylinders

11 mm diameter and about 22 mm height, containing tens of thousands of grains.
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Experiments performed on such small specimens have previously allowed grain-

scale observations of grain-scale phenomena—such as strain localisation,

presented in IWBDG 2011, and some initial observations of grain breakage pre-

sented in IWBDG 2014.

In this work we present selected results from a recent experimental programme

where the small sand specimens mentioned above are subjected to cycles of triax-

ial compression and triaxial extension: the material is “yielded” in extension, after

which the loading is reversed and the material is “yielded” in compression—a num-

ber of cycles are performed. The way in which extension and compression-like local-

isation patterns (i.e., dilatant shear banding, and necking respectively) appear, get

activated and disactivated on reversal of loading are measured, and discussed—in

terms of both (continuum) strain fields and individual grain rotations.

2 Tested Material, Experimental Setup and Testing
Programme

The experiment is performed in the x-ray scanner of Laboratoire 3SR in Grenoble

[1]. Deviatoric loading is applied under strain control, at a constant rate of axial

strain equal to 5.7% per hour. A bayonet system enables the sample not only to be

compressed, but also to be stretched by the axial loading system—throughout the test

the cell pressure, i.e., the radial stress (equal to 𝜎2 and 𝜎3 in compression and 𝜎1 and

𝜎2 in extension) is held constant. The axial force is recorded with a load transducer,

while the axial shortening of the sample is monitored with an LVDT.

The tested material is Hostun sand, an angular quartz sand with mean diameter

of 328 μm and a coefficient of uniformity of 1.7. The specimen is prepared by dry

pluviation into a 300 μm thick latex membrane stretched in a mould with a drop

height of 1 m. The sample is then isotropically loaded up to 430 kPa by increasing

confining pressure. While acquiring x-ray tomography data, (which takes around 2 h

per state and which requires no change in the specimen), the axial loading system is

halted and the piston held in place. The test analysed in this paper includes cycles

of compression and extension that are schematically depicted in the inset in the top

left of Fig. 1. The macroscopic axial stress-strain response of the specimen is shown

on the same figure. The points at which the test is stopped in order to acquire a 3D

image of the specimen are labelled 01–20 on the curve. The test will be discussed

branch by branch (i.e., according to the direction of loading) showing for each branch

results of local measurement of kinematics rendered both as the second invariant of

the locally-measured strain tensor (in the case of a “mesoscopic continuum DIC”

analysis—see [6]) and as individual grain rotations (in the case of grain-based DIC).
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Fig. 1 Macroscopic stress-strain results obtained for the cyclic triaxial compression/extension test

on Hostun sand studied herein. Note confining pressure is constant (and equal to 430 kPa), and axial

stress is always compressive

3 Image Analysis

Figure 2 shows a vertical slice taken from each x-ray tomography reconstruction

of each scanned state. These images are the microstructural measurement of the

specimen in a number of different states at 20 μm/px. For the incremental contin-

uum maximum shear strain field that will be presented below, a local DVC code

(TomoWarp2, [7]) is used on a regular grid of points defined in the first of the pair

of images compared. Points are 20 px distant from each other in all cardinal direc-

tions. Each point is represented by a texture or correlation window centred on the

point and measuring 27 × 27 × 27 px. Each correlation window is match in the sec-

ond image of the pair by maximising the Normalised Correlation Coefficient in a

finite search area, with a first approximation to the nearest pixel displacement, and

then with sub-pixel accuracy by locally interpolating the field of NCC. The method

used of these meso-measurements is therefore rigid and measures displacements

only. For a particle-based technique, particles must be identified in the images. Start-

ing from the greyscale images (which represent the field of x-ray attenuation in the

scanned area), they are first binarised such that the solid and void phases are unequiv-

ocally distinguished. The solid phase is then separated into individual sand grains by

using a 3D watershed algorithm. Identified particles are then individually numbered

(“labelled”). For the analysis presented herein only the first image is segmented into

individual particles, which means that the philosophy is closer to the total approach
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Fig. 2 Vertical slices from the reconstructed x-ray tomography 3D volumes throughout the test,

showing the loading direction between states

Fig. 3 Branch A—first extension: macroscopic stress-strain response shown alongside incremental

fields of maximum shear strain and particle rotations in the axis normal to the slice. Please note

that for both types of measurements, given the small size of the externally-applied load increments,

the colourmaps have been exceptionally expanded with respect to the other branches discussed

of [4] than our previous work with ID-Track [2, 3] which requires every step to be

separated. TomoWarp2 is used to track particles, with points now defined as grain-

centres and therefore not on an unstructured grid. Correlation windows are adapted

to the size of the grain, and using the labelled image of each particle as a mask, only

the greylevel corresponding to the grain is correlated. Particles are tracked always

starting from the first image (but using as prior displacements the previous step). In

this case the correlation is still rigid, but has translational and rotational degrees of

freedom.
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Fig. 4 Branch B—first compression: macroscopic stress-strain response shown alongside incre-

mental fields of maximum shear strain and particle rotations in the axis normal to the slice

Fig. 5 Branch C: macroscopic stress-strain response shown alongside incremental fields of max-

imum shear strain and particle rotations in the axis normal to the slice

Fig. 6 Branch D: macroscopic stress-strain response shown alongside incremental fields of max-

imum shear strain and particle rotations in the axis normal to the slice



www.manaraa.com

494 E. Andò et al.

Fig. 7 Branch E: macroscopic stress-strain response shown alongside incremental fields of maxi-

mum shear strain and particle rotations in the axis normal to the slice. Please note that in the interest

of space not all increments are shown here

4 Results

4.1 Branch A—First Extension

The first two scanned increments 01–02 and 02–03, which go from an isotropic state

of stress (01) towards extension (02—𝜖a = 0.08% and 03—𝜖a = 0.13%) are very

small axial strain increments, meaning that with respect to the sensitivity of the local

measurements we’re able to make, few mechanisms can be identified, although (with

the benefit of hindsight) in the meso-DIC some concentration of shear strain can be

seen in the bottom right of the sample in the increment 02–03, in the middle slice

chosen (Fig. 3).

On the same slice, grains are coloured with respect to their rotation around the

axis normal to the slice (positive clockwise). In both increments, rotations are very

small (generally less than 0.2
◦
), and no particular structure can be observed.

4.2 Branch B—First Load Reversal: Towards Compression

In this branch the axial loading direction is reversed (Fig. 4). The first state in this

branch (which is the last state of the previous) is in a state of triaxial extension,

however the next scanned state is in triaxial compression. It is important to note that

the displacement applied in compression is significantly larger what was applied in

the previous branch—meaning that the colour maps for the local measurements are

now on a different (and forthwith constant) scale.

In these increments a clear picture emerges from both maximum shear strain maps

as well as the individual grain rotation: in the first increment activity is concentrated
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in the bottom right of the slice shown. Between increments 04–05 and 05–06 a more

complex pattern of localised strain/rotations starts to develop. As the specimen is

pushed further into compression, the kinematic effect of the friction cones is clearly

visible—especially on the top of the specimen.

4.3 Branch C—Second Load Reversal: Towards Extension
Again

At the beginning and end of this branch, increments 06–07 and 09–10 present local-

isation patterns with very different orientations (Fig. 5). Increment 06–07 shows a

patterns similar to that observed in 05–06 in compression, whereas orientations in

09–10 are tilted at a much lower angle and localised strain is concentrated essentially

at the bottom of the specimen, with some activity emerging also in the middle.

The “compression-like” localisation patterns visible in 06–07 are in fact the local

reversing of the kinematics seen in increment 05–06—is !!! JD asks: “if” instead of

“is” ??? the rotations are studied in detail, it is visible (for example in the !!! blatantly

??? localised friction cone) that grain’s rotations change sign in this increment.

The transition that occurs during this branch is made with a large axial loading

step—07–08—which despite being all in a state of triaxial extension, clearly mani-

fests memory of the localisation patterns in compression, whereas when the speci-

men is stretched beyond its initial length, the localised kinematics no longer reflect

what was seen in compression but rather “extension-like” arrangements in increment

08–09 and 09–10.

4.4 Branch D—Third Load Reversal: Towards Compression
Again

Consistently with what was observed in the load reversal commented above, despite

the reversal of loading, the local measurements in the first increment show signifi-

cant traces of the previous branch. As the sample is compressed more than its initial

length, compression-like localisation bands take over and strain starts to localise sig-

nificantly in the middle of the specimen. Once again, the localisation of maximum

shear strain corresponds clearly to the rotations of individual particles (Fig. 6).
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4.5 Branch E—Fourth and Last Load Reversal: Towards
Extension and Failure

Consistent with the previous reversal-into-extension, in the first increment

compression-like features are visible, with reversed rotations indicating local kine-

matical reversal. The sample is stretched very far in extension, until clearly localised

necking at the bottom of the specimen dominates all other previously-activated

mechanisms of localised strain Fig. 7.

In the increment 17–18 a competing “neck” is visible in the middle of the speci-

men but is disactivated with increasing strain.

5 Conclusions

In the paper we have presented a micro-mechanical analysis of a single, complex

experiment in which the direction of loading is reversed a number of times. Our

local image-based kinematical measurements indicate that two distinct patterns of

strain localisation are associated with the two loading directions, differing primarily

in their orientation of the band of concentrated strain with respect to the axis of the

specimen (steeper for compression than for extension—this is supported by previous

work with monotonic loading in both directions). The main finding from this prelim-

inary analysis of the cyclic test is that upon load reversal, localisation mechanisms

belonging to the previous loading direction surprising persist and “rewind” until the

total strain changes sign.

Further analysis will include the evolution of fabric quantities throughout these

cycles, taking advantage of techniques currently in development by our group within

the “SOMEF” ERC project [8]. A clear interest for this kind of rich experimental

data is as a test case for advanced micro-mechanical simulations, after they have

been calibrated in monotonic loading for example. A perfect example of this is the

recently-developed LS-DEM model from Caltech [5] which seems to capture all

the macro-scale mechanical subtleties of the behaviour of granular media through

a careful treatment of the grain scale (which in some cases has come straight from

our 3D images).
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Analysis of Shear Bands in Sand Under
Reduced Gravity Conditions

Jason P. Marshall, Ryan C. Hurley, Dan Arthur, Ivan Vlahinic,
Carmine Senatore, Karl Iagnemma, Brian Trease and José E. Andrade

Abstract The strength of granular material, specifically sand is of pivotal impor-

tance for understanding physical phenomena on other celestial bodies. However,

relatively few experiments have been conducted to determine the dependence of

strength properties on gravity. In this work, we experimentally investigated three

measures of strength (peak, confined flow, and unconfined flow friction angle) in

Earth, Martian, Lunar, and near-zero gravity. The angles were captured in a pas-

sive Earth pressure experiment conducted on a reduced gravity flight. The results

showed no dependence of the peak friction angle on gravity, a weak dependence of

the confined flow friction angle on gravity, and no dependence of the unconfined

flow friction angle on gravity. These results highlight the importance of understand-

ing strength and deformation mechanisms of granular material at different levels of

gravity.

1 Introduction and Background Information

Granular materials are ubiquitous in nature encompassing everything from foods to

soils. These particulate materials play a pivotal role in human society on Earth and

an increasingly prominent role on other celestial bodies that humanity is exploring.

Understanding granular materials is important for future off-world scientific endeav-

ors; these materials impact all functional aspects of missions including penetrator

experiments, drilling events, and robotic mobility.
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Fig. 1 a The Mohr-Coulomb failure envelope is shown. The angle 𝜙 is used to describe the

strength. b Strength in granular material can be defined by a peak strength, 𝜙p; confined flow

strength, 𝜙f ; and an unconfined flow strength, 𝜙r. c Failure in granular material along a shear band

with an angle of 45◦ − 𝜙

2

Research on granular materials has been conducted for centuries, but almost

exclusively under Earth gravity. While many of the conclusions from existing

research will remain true in non-Earth gravity environments, it is possible that many

will not. We provide experimental evidence of internal friction angles, hereafter
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called friction angles [11], corresponding to peak strength, confined flow strength,

and unconfined flow strength in Earth, Martian, Lunar, and near-zero gravity. These

results add data to an under-researched regime of granular materials, namely strengths

at low-confinement levels and their dependence on gravity.

In this work, we assumed a Mohr-Coulomb failure envelope [5] given by 𝜏 =
𝜎tan𝜙 + c, where 𝜏 is the shear stress, 𝜎 is the normal stress, and c is the cohe-

sion. We deal exclusively with a drained granular material and thus assume it is

cohesion-less. The Mohr-Coulomb failure envelope defines failure in terms of con-

fining stresses and a friction angle, which is best understood graphically as seen in

Fig. 1. Many experimental measurements of friction angles have been made at high

confining pressures [2, 3, 6–9], but few studies have been conducted with low con-

fining pressures [1, 4] and even fewer with varying gravity levels [1, 12]. In addition

to the friction angle, the shape of the failure pattern in passive Earth pressure exper-

iments is important, for which we assume a log-spiral pattern [11].

2 Experimental Setup

The above properties were investigated at different gravity levels with a passive Earth

pressure experiment [11]. The experiment was conducted on a reduced gravity flight

with granular material deformed via a push block in a box with a glass face on the

front. As the block was pushed in, the sand failed and ruptured in a clearly defined

shear band. Data was recorded on 3 Martian, 2 Lunar, and 20 near-zero gravity

parabolas in addition to 5 tests at Earth gravity. The sand was fluidized by vibrat-

ing and injecting air into the sample between each test, resulting in a relative density

of nearly 100%. The free surface was mostly flat with a slight amount of buildup of

material on the left side, however, the surface was the same for all tests conducted.

A 1920× 1080 pixel video of the deformation on the front face was recorded at 60

frames-per-second. Individual images were then extracted and analyzed using digi-

tal image correlation (DIC) [10]. The resulting strain field was used to calculate the

log-spiral failure surface and the friction angles for each test.

3 Results

3.1 Peak Friction Angle

The peak friction angle was captured by assuming a 2% max shear strain in the sand

as the point of failure. While we chose 2%, other reasonably small values will result in

nearly the same failure surface. Color plots of all regions of the sand above this max

shear strain value resulted in a clear log-spiral failure surface as shown in Fig. 2a.

This failure pattern was repeatedly seen at Earth, Martian, and Lunar gravity levels
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Fig. 2 aLog-spiral failure surface for the peak friction angle at lunar gravity. b Peak friction angles

at different gravity levels with standard error bars

and occurred within a fraction of a second of initial loading and with a translation of

the push block less then 0.02 in. We calculated the friction angle corresponding to

this failure surface and found that a value of around 20
◦

was consistently seen across

these gravity levels. Figure 2b shows the friction angle values at the different gravity

levels with standard error bars. We found that there was essentially no dependence

of the peak friction angle on gravity.

3.2 Confined Flow Friction Angle

Almost immediately after the log-spiral failure surface formed, flow began in a local-

ized shear band. The shear band shape was a planar surface at a lower friction angle

between 0
◦

and 10
◦
, as shown in Fig. 3. The angle was clearly lower than the peak

values at all gravity levels. Additionally, there was a weak dependence of the con-

fined flow friction angle on gravity level, as shown in Fig. 3b. At near-zero and lunar

gravity, the confined flow friction angle essentially dropped to 0
◦
, while angles at

the higher gravity levels for Mars and Earth were around 5
◦
–10

◦
. We note that there

were a few negative friction angle values in the data counter to theoretical lower

bounds at 0
◦
. We attributed these values to random variations of granular contacts

within the sample and errors in establishing the angle of the failure surface that led

to slight deviations from the theoretically bounded values.
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Fig. 3 a Planar flow surface for the confined flow friction angle at Martian gravity. b Confined

flow friction angles at different gravity levels with standard error bars

3.3 Unconfined Flow Friction Angle

As the push block progressed into the mass of sand, a pile formed. Eventually, the

slope of the pile increased beyond the unconfined flow friction angle and failure

occurred. Individual grains rolled or slid down the pile causing a reduction of the

pile slope to a stable configuration. We captured this angle at all non-zero gravity

levels on the left side of the pile, as shown in Fig. 4a. The calculated unconfined

Fig. 4 a Example of unconfined flow friction angle at Martian gravity. b Unconfined flow friction

angles at different gravity levels with standard error bars
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flow friction angle at Earth, Martian, and Lunar gravities was around 33
◦

and we

found no dependence of this value on the gravity level, as shown in Fig. 4b. This

value corresponded closely with values calculated at Earth gravity with a standard

test.

4 Conclusions

These results have a few important consequences with specific application to space

exploration. The lack of dependence of the peak and unconfined flow friction angles

on gravity suggests that soil experiments conducted at Earth gravity with representa-

tive granular materials will be valid with respect to these angles. However, the weak

dependence of the confined flow friction angle on gravity suggests that any extrapo-

lation needs be done carefully as different levels of gravity can affect the soil prop-

erties. In general careful consideration must be taken when designing components

and experiments for non-Earth celestial bodies that include granular material inter-

actions, as the material strength and deformation mechanisms may be significantly

different. These results also suggest that further experiments should be pursued to

refine the trends found.
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Instability Analysis of Granular Media
via a Purely Micromechanical
Constitutive Model

Mehdi Pouragha, Richard Wan and Xu Gong

Abstract In this paper, we develop a rate independent, incrementally linear consti-

tutive model for 2D granular materials within a robust multiscale framework where

micromechanical interactions and microstructural rearrangements between particles

are being described statistically. The model when implemented into a finite element

code allows us to explore the different microscopic states both inside and outside of

the strain localization zone that develops during shearing in a biaxial test. A major

finding is the discovery of similarities in microstructural characteristics inside a shear

band during localized failure and critical state in diffuse failure.

1 Introduction

Micromechanical studies on granular materials during the past three decades have

resulted into up-scaling expressions for stress and strain in terms of contact and

force network properties and their statistics [1]. However, a coherent constitutive

framework to close the loop of equations so as to relate stress to strain through such

micromechanical expressions is still missing. In fact, currently available microme-

chanical constitutive models often involve ad-hoc evolution laws for macrovariables

or continuum-inspired potential functions [2].

Based on a mechanism-specific decomposition of micro-variables evolution [3],

the current study proposes a general multiscale framework from which a constitutive

model emerges from purely micromechanical considerations. A rate-independent

linear incremental model for the simple case of 2D granular materials under propor-

tional loading condition is herein formulated. Comparison with DEM results proves

that the model is able to predict not only the stress-strain response, but also the evo-

lution of the principal underlying microvariables. The resulting constitutive model

is next incorporated into finite elements (FEM) simulations in order to investigate
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strain localization and instability characteristics of granular materials. The results

indeed show that the microstructural signature within the shear band matches that of

critical state in diffuse failure.

2 Emergence of a Statistical Constitutive Relation

We start by assuming that stress and strain rates in granular assembly can be

expressed in terms of the change in statistical descriptors, ̇S as follows:

�̇� = K ̇S, �̇� = L ̇S (1)

where {𝝈, 𝜺 ∈ IRm}, while {S ∈ IRp} is a generalized vector containing statistical

descriptors, such as anisotropy parameters, coordination number and the likes, with

p ≥ m. As such, the two matrices L andK represent linear IRp → IRm
transformations

that are not invertible. Furthermore, it is assumed that two different mechanisms,

namely dissipative, d, and non-dissipative, nd, contribute to the strain and the change

in S throughout the loading. This decomposition slightly differs from elastic/plastic

split from total strain in that the dissipative mechanism here refers to the evolution

of the material’s structure along “Stable Evolution State” (SES) [4] which can also

contribute to stress changes. Moreover, the contributions of the two mechanisms are

assumed to be decoupled:

�̇� = �̇�nd + �̇�d,
̇S = ̇Snd + ̇Sd, and �̇�nd = Lnd

̇Snd, �̇�d = Ld
̇Sd (2)

In order for the transformation from stress and strain space to the statistical domain to

be bijective, n = p − m number of additional relations are needed among the vari-

ables. Such “consistency” relations are assumed to describe the interrelation among

the evolution of statistical variables, and are assumed to remain unchanged during

the loading. Consistency equations are often mechanism-specific as different mech-

anism are often subjected to different constraints such that:

Gi
nd(Snd) = 0 →

𝜕Gi
nd

𝜕Snd
̇Snd = 0 and Gi

d(Sd) = 0 →
𝜕Gi

d

𝜕Sd
̇Sd = 0 i = 1… n

(3)

Equations (1) and (3) can now be combined through partitioning of the individual

elements:

⎧
⎪
⎨
⎪
⎩

�̇�nd
−−
𝟎n,1

⎫
⎪
⎬
⎪
⎭

=
⎡
⎢
⎢
⎢
⎣

Lnd
−−
𝜕Gi

nd

𝜕Snd

⎤
⎥
⎥
⎥
⎦

̇Snd ,
⎧
⎪
⎨
⎪
⎩

�̇�d
−−
𝟎n,1

⎫
⎪
⎬
⎪
⎭

=
⎡
⎢
⎢
⎢
⎣

Ld
−−
𝜕Gi

d

𝜕Sd

⎤
⎥
⎥
⎥
⎦

̇Sd (4)

which now express IRp → IRp
transformations. The symbol 𝟎n,1 in Eq. (4) represents

the zero vector in IRn
. Similar expressions can be derived for stress increments.
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Assuming that the inverse of each of the transformation matrices in Eq. (4) exists,

stress and strain increments for the two mechanisms can be related to each other, i.e.

̇�̄�nd = ̄Dnd ̇�̄�nd, ̇�̄�d = ̄Dd ̇�̄�d (5)

with

̇�̄�nd =
⎧
⎪
⎨
⎪
⎩

�̇�nd
−−
𝟎n,1

⎫
⎪
⎬
⎪
⎭

,

̇�̄�d =
⎧
⎪
⎨
⎪
⎩

�̇�d
−−
𝟎n,1

⎫
⎪
⎬
⎪
⎭

,

̇�̄�nd =
⎧
⎪
⎨
⎪
⎩

�̇�nd
−−
𝟎n,1

⎫
⎪
⎬
⎪
⎭

,

̇�̄�d =
⎧
⎪
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⎪
⎩

�̇�d
−−
𝟎n,1

⎫
⎪
⎬
⎪
⎭

̄Dnd =
⎡
⎢
⎢
⎢
⎣

K
−−
𝜕Gi

nd

𝜕Snd

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

Lnd
−−
𝜕Gi

nd

𝜕Snd

⎤
⎥
⎥
⎥
⎦

−1

,

̄Dd =
⎡
⎢
⎢
⎢
⎣

K
−−
𝜕Gi

d

𝜕Sd

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

Ld
−−
𝜕Gi

d

𝜕Sd

⎤
⎥
⎥
⎥
⎦

−1 (6)

We further assume that the contributions of the different mechanisms to strain are

controlled by a parameter 𝛼 which is a function of the distance to SES [4], i.e.

�̇�nd = 𝛼�̇�, and �̇�d = (1 − 𝛼)�̇� (7)

As such, the two expressions in Eq. (5) can be combined to give:

̇�̄� = ̄Dep ̇�̄�,
̄Dep = 𝛼

̄Dnd + (1 − 𝛼) ̄Dd (8)

This represents a IRp → IRp
relation which can be reduced to IRm → IRm

recalling that

last p − m components in both ̇�̄� and ̇�̄� are zero. The change in statistical variables

can also be found as:

̇Snd =
⎡
⎢
⎢
⎢
⎣

Lnd
−−
𝜕Gi

nd

𝜕Snd

⎤
⎥
⎥
⎥
⎦

−1

𝛼�̇�,
̇Sd =

⎡
⎢
⎢
⎢
⎣

Ld
−−
𝜕Gi

d

𝜕Sd

⎤
⎥
⎥
⎥
⎦

−1

(1 − 𝛼)�̇� (9)

For the simple case of proportional loading in 2D, the statistical description is

chosen to include coordination number, fabric anisotropy, average normal contact

force, normal force anisotropy, and tangential force anisotropy, S = {z, ac, fn, an, at}T .

The conversion matrix for stress can be found from the expressions in [1] to be:

K = r
4v

[
2fn 0 2z 0 0

fn(ac + an + at) z fn z(ac + an + at) zfn zfn

]

(10)

The matrix Lnd can be computed from any elastic constitutive matrix that expresses

elastic strain components in terms of microvariables. Herein, we use the model devel-

oped by the authors in [5]. The expression for Ld in terms of coordination number

and fabric anisotropy can also be found in [6, 7].
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Based on the framework described above, three consistency relations for each

mechanism are needed to close the loop of equations. For dissipative mechanisms,

the first relation comes from the fact that macrovariables evolution should be con-

tained within SES surface [4]. The second and third relations come from the obser-

vation that, beyond the peak stress, the curves of an(1 + ac)∕(1 − ac) versus q/p and

a2n(1 − ac)∕(1 + ac) versus at assume the same form beyond the peak strength.

Similar relations are observed for non-dissipative mechanisms: The initial z ver-

sus ac variations during the contact loss and gain regime have been modeled analyt-

ically in [3]. Furthermore, the initial variations of an versus q/p and an(1 − ac)∕(1 +
ac) versus at are observed to remain unchanged for different loading paths.

The final ingredient of the constitutive model is the proportionality of the two

mechanisms, 𝛼, which is assumed to be a linear function decreasing from 1 to zero

in relation to the distance to SES [4]. By substituting these variables into the con-

stitutive framework, a full constitutive model is obtained whose accuracy has been

verified, though not included in this paper, by comparing benchmark tests with DEM

simulations.

3 Finite Elements Implementation and Discussion

The developed micromechanical constitutive model has been implemented into FEM

to simulate the response of an initially dense sample under biaxial loading condition,

with special attention given to the instability characteristics beyond stress peak. By

providing access to salient microvariables such as coordination number and fabric

anisotropy, the constitutive model enables us, probably for the first time, to virtually

look into the evolution of microstructure for different failure modes such as diffuse

and localized. Figure 1 shows the stress-strain and volumetric response of the sam-

ple where a clear bifurcation emerges shortly after the peak stress. From a microme-

chanical point of view, the bifurcation takes place exactly when the SES surface is
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Fig. 1 FEM simulation of a biaxial test. Bifurcation of a deviatoric stress, and b void ratio are

shown for different Gauss points
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Fig. 2 Localized fields of: a deviatoric strain, b void ratio, c coordination number, and d fabric

anisotropy, at global axial strain of 2%. The representative points are identified on (a)

reached; a state which has been previously seen to be connected to the isostatic limit

of the granular assembly [4].

A typical localized mode of the failure is confirmed in Fig. 2a and b with both the

deviatoric and volumetric strains localized within a shear band. Figure 2c and d illus-

trate the remarkable advantage of such a purely micromechanical constitutive model

displaying the evolution of microvariables and the important role it can play in insta-

bility analysis. Interestingly, the fields of coordination number and fabric anisotropy

also follow the localization pattern of strain in general, while the fabric anisotropy

decreases to its critical value only within the shear band which is in accordance with

previous DEM studies [6]. Compared to the strain localization pattern in Fig. 2a and

b, the fields of coordination number and fabric anisotropy show a wider transition

zone around the shear band that hints towards a different loading path for these point.

This is further investigated by probing the response of three representative points

inside (A), outside (B), and on the boundary (C) of the shear band.

Figure 3 shows that, for a material point inside the shear band (point B), the stress-

strain response as well as the microsructure steadily tend toward the critical state,

while the material outside the shear band (point A) undergoes unloading. At the

boundaries of the shear band (point C), however, the material experiences a transi-

tion in softening rate, as more clearly seen in Fig. 3a and b. Despite the decrease in

deviatoric stress at these boundaries, the local microvariables do not tend towards the

critical state, but instead move along the SES surface [4] with slight change in fabric

anisotropy. As such, the drop in deviatoric stress at the boundaries of shear band is

mainly due to the drop in mean stress, p, and hence decrease of average interparticle

force.

It should be noticed that similar value of fabric anisotropy inside and outside the

shear band in Fig. 2d is merely a coincidence. The reason is that the loading process

has stopped at global axial strain of 2% resulting in partial unloading at point A,

as evidenced in Fig. 3a. Indeed, the trends in Fig. 3d indicate that the decrease in

fabric anisotropy at points A and B are due to different mechanisms and had the
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Fig. 3 Stress-strain and microstructural response of the material points inside (A), outside (B),

and on the boundary (C) of the shear band (see Fig. 2). Graphs show: a stress-strain and stress path,

b volumetric response, and c the evolution of fabric anisotropy versus coordination number

loading been continued, the fabric anisotropy outside the shear band would have

kept decreasing, as opposed to within the shear band where the fabric anisotropy

would asymptotically tend to the critical state value.

4 Conclusions

The study presents a novel multiscale framework for formulating a constitutive

model for granular materials based on purely micromechanical considerations. The

expressions for global stress and strain in terms of microvariables such as coordi-

nation number and fabric anisotropy, together with consistency relations describ-

ing the interrelated evolutions of microvariables have been used to arrive at a

rate-independent incrementally linear constitutive model. A simple version of such
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models has been developed for the case of 2D granular media under proportional

loading conditions, and has been subsequently implemented into a finite elements

code to simulate a biaxial test. Being predicated on microstructural descriptions, the

model provide the opportunity to investigate instability characteristics of granular

media from a micromechanical point of view. A post-peak bifurcation is shown to

take place only when the state of material reaches the “stable evolution state” sur-

face [4]. The distribution of coordination number and fabric anisotropy within the

sample follow the strain localization pattern with the microstructure approaching the

critical state only inside the shear band. A transition zone was identified at bound-

aries of the localized zone where rate of softening changes under combined stress

continuity and strain discontinuity condition. Interestingly, the microstructural char-

acteristics are found not to approach the critical state within this transition zone, but

instead move along the SES surface as the mean stress decreases locally.
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Interplay Between Symmetry
and Anti-symmetry in the Evolution
of Localized Buckle Patterns

M.K. Paesold, T.J. Dodwell and G.W. Hunt

Abstract A model of geological folding comprising a thin elastic beam supported

by a nonlinear viscoelastic (Kelvin-Voigt) material is subjected to a slow rate of

applied end-shortening. The description reduces to the nonlinear Swift-Hohenberg

partial differential equation (PDE), supplemented by a constraint condition. A mod-

ified one degree-of-freedom Galerkin description is introduced, built by adopting

the evolving modeshapes of the corresponding statical equilibria at the same state

of compression. An evolutionary energy landscape is described, formed by plotting

total potential energy against the single degree of freedom and the end-shortening.

Comparisons of the reduced system with numerical solutions of the full PDE are

found to be in good qualitative agreement for slow rates of applied end-shortening.

1 Introduction

Following the pioneering work of Biot [1], folded buckle patterns in structural geol-

ogy have traditionally been assumed to be periodic. A beam in viscous medium,

for example, would be expected to display the dominant wavelength, suggested by

linear analysis as that growing most rapidly over time. In contrast, some elastic buck-

ling problems display spatially localised solutions, driven by material and geometric

nonlinearities [2–4]. In this, much progress has developed around stability of a com-

pressed beam supported by a nonlinear elastic foundation, with carefully selected
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properties to mimic either softening and/or stiffening characteristics in the support-

ing medium. Synergy between these two separate developments then naturally led

to study of viscoelastic systems with the same nonlinearities [5].

Here, a beam supported by a nonlinear viscoelastic (Kelvin-Voigt) material under

slow end-compression is described by the nonlinear Swift-Hohenberg PDE, together

with a constraint condition. The foundation has an elastic part that first softens and

then re-stiffens. This reflects many purely elastic formulations [6–9], where the equi-

librium states are known to comprise two alternative forms of localised snaking path,

one spatially symmetric and the other anti-symmetric, that emerge from the flat state

at a critical bifurcation point. These paths are generally disconnected, but are linked

by ladders of non-symmetric equilibria, bringing with them regions of bi-stability.

For the dynamical PDE, interest then naturally falls on the transitions between these

two attractors as the system evolves.

To explore the qualitative aspects further, a modified one degree-of-freedom

Galerkin description is introduced, built on the evolving modeshapes of the statical

equilibrium states. Total potential energy is then plotted against the single degree of

freedom and the end-shortening to provide an evolutionary energy landscape. Move-

ment on the surface, governed by a viscous gradient-flow process in one dimension

and a constant flow rate in the other, describes the dynamics. Changing patterns of

minima and maxima in the (constrained) energy then bring about possibilities for

dynamical bifurcation and related reversals in the direction of flow.

2 The Model

We consider the model for dynamic localized folding seen in Fig. 1, comprising an

infinitely long inextensible elastic beam, supported by a nonlinear viscoelastic foun-

dation and subjected to end-shortening at a constant rate R. Deformation is charac-

terised by vertical displacement of the centreline u(x, t), where x is arc-length mea-

sured along the beam, and t > 0 is time. The shortening at time t is given by

x P
P

u

Fig. 1 Strut supported by nonlinear springs and linear dashpots in parallel. Axial load P would

normally be accompanied by bending moments and shear forces at points of application (not shown)
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𝛥 = 1
2 ∫

∞

−∞
u′ 2 dx = Rt, (1)

to first order, where primes denote differentiation with respect to x. For moderately-

large deflections the bending energy is
1
2
B ∫ u′′2 dx, where B is the beam bending

stiffness. The Winkler foundation, comprising a nonlinear spring and linear dashpot

in parallel, provides a strictly local and vertical total resistive force,

f (u) = fe(u) + fv(u) = k1u − k2u3 + k3u5 + 𝜂u̇, (2)

where ̇( ) denotes differentiation with respect to time t. The negative cubic and pos-

itive quintic coefficients mean that, as displacements into the foundation grow, the

resisting stiffness initially drops and then increases [7].

We introduce the Lagrangian

L (x, t, u) = 1
2
Bu′′2 + 1

2
k1u2 −

1
4
k2u4 +

1
6
k3u6 +

1
2
𝜂u̇u − 1

2
Pu′2. (3)

Elastic strain energy at time t is given by the functional

E(t, u) = ∫
∞

−∞

1
2
Bu′′2 + 1

2
k1u2 −

1
4
k2u4 +

1
6
k3u6 dx, (4)

whereas

D(t, u) = 1
2
𝜂 ∫

t

0 ∫
∞

−∞
u̇u dx ds, and W(t, u) = 1

2 ∫
t

0 ∫
∞

−∞
P(s)u′2 dx ds, (5)

are the energy dissipated in the dashpot and the work done by the load up to time t,
respectively. Evolution of the system is described by the Euler-Lagrange equation,

𝜕L
𝜕u

− 𝜕

𝜕t

(
𝜕L
𝜕u̇

)
+ 𝜕

2

𝜕x2

(
𝜕L
𝜕u′′

)
− 𝜕

𝜕x

(
𝜕L
𝜕u′

)
= 0, (6)

subject to appropriate initial, essential and natural boundary conditions. This can

be physically interpreted as a vertical force balance on dx, at time t. Appropriate

differentiation of (3) yields the constrained nonlinear fourth-order PDE,

Bu′′′′ + Pu′′ + k1u − k2u3 + k3u5 + 𝜂u̇ = 0, subject to
1
2 ∫

∞

−∞
u′2 dx = Rt. (7)

We can reduce this to the non-dimensional form,

u̇ = −
(
u′′′′ + pu′′ + u − u3 + 𝛼u5

)
and

1
2 ∫

∞

−∞
u′ 2 dx = 𝜌t, (8)
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by the following transformation: x ↦
(
B∕k1

)1∕4 x; t ↦ (𝜂∕k1) t; u ↦
√
k1∕k2u:

where p(t) = P(t)∕
√
Bk1; 𝛼 = k1k3∕k22; and 𝜌 = R𝜂k2∕k21

√
B∕k1. We note that the

final system is in fact a two parametric group in (𝛼, 𝜌), as the load p(t) is a free vari-

able directly imposed by the shortening constraint.

3 Static Equilibrium—Snakes and Ladders

Before seeking solutions to PDE (8), it is useful to review the associated stationary

states, using the fourth-order reversible ordinary differential equation (ODE) in x:

u′′′′ + pu′′ + u − u3 + 𝛼u5 = 0. (9)

with the same ‘cubic-quintic’ foundation force characteristic: fe(u) = u − u3 + 𝛼u5.

This is known to exhibit a Hamiltonian-Hopf bifurcation from the unbuckled state

into a periodic buckling mode at p = 2 [3, 4]. We compute such solutions in AUTO

[10] over x ∈ [−L,L], starting arc-length continuation close to the bifurcation point

and seeding it with the eigenmode in two configurations, one symmetric about x = 0
(cosine) and the other anti-symmetric (sine). For convenience, pinned (u = u′′ = 0)

rather than homoclinic [11] boundary conditions are chosen, the difference being

numerically inconsequential for a long beam [12]. End-shortening 𝛥 is chosen as the

continuation parameter, with the load p in Eq. (9) being regarded as free.

Figure 2 shows a typical load–end-shortening bifurcation diagram and corre-

sponding solution shapes. This shows the classic snakes-and-ladders scenario of

a pair of snaking equilibrium solutions, one symmetric in x about its mid-point and

the other anti-symmetric, each fluctuating in load as 𝛥 increases. The equilibrium

shapes themselves are all homoclinic, with a central region that grows with 𝛥; these

are the initial stages of a heteroclinic connection to a periodic state at the Maxwell

load [7]. Along the snakes the folded profiles are each a function of both x and 𝛥,

so they change shape but also grow in amplitude as 𝛥 increases. The snaking paths

are connected at bifurcation points by ladders [8, 9], comprising states of transition

0 1 2 3 4 5 6 7 8

1.2

1.4

1.6

1.8

2

p

Δ

Fig. 2 Snakes and ladders equilibrium paths for 𝛼 = 0.3. Stable and unstable states are shown as

black and grey respectively
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between symmetry and anti-symmetry; for a recent account of such behaviour see

[13]. Unlike the response under controlled load where limit points have a part to play,

stability here is only lost or gained at the bifurcation points.

4 Evolution of Transient Folding Patterns

4.1 Finite Element (FE) Procedure for Constrained
Gradient Flow

Equation (8) can be solved as a constrained gradient flow problem over a large-but-

finite domain X ∶= [−L,L], discretized into N nodes xi = ih − L where h = 2L∕N
and i = 0, 1,… ,N. The weak form is found by multiplying by a suitable test function

v, integrated over the domain X and then by parts, to give

∫X
u̇v dx = −∫X

u′′v′′ dx + p∫X
u′v′ dx − ∫X

fe(u)v dx such that
1
2 ∫X

u′2 dx = 𝜌t. (10)

By approximating u and v as piecewise cubic functions spanned by the cubic FE

shape functions 𝜙i(x), this constrained time-dependent variational equation converts

to a system of differential algebraic equations (DAEs) of index-1 given by

[
UTC 0
A 0

] [
̇U
ṗ

]
=
[

R
−(B − pC)U − D

]
. (11)

Here the matrices are defined as follows

Aij = ∫X
𝜙i𝜙j dx, Bij = ∫X

𝜙

′′
i 𝜙

′′
j dx, Cij = ∫X

𝜙

′
i𝜙

′
j dx, and Di = ∫X

fe(U)𝜙i dx.
(12)

where the nonlinear functional defined byDi is computed using a high order Gaussian

quadrature rule. To produce an index 1 DAE, we differentiate the constraint equation

in time and impose the constraint as ∫X u′u′T dx = 𝜌. Full details of the FE procedure

can be found for a similar problem in [14, Sect. 6.1].

Up to now the formulation is general, without consideration of boundary condi-

tions. We impose homoclinic boundary conditions at each end of the finite domain

by setting end nodal values (u1, u′1, uN , u
′
N), such that the linearisation of (6) i.e.

u(x) = A1e𝜉1x + A2e−𝜉1x + A3e𝜉2x + A4e−𝜉2x (13)

is satisfied in the homoclinic tails [11]. Here 𝜉1 and 𝜉2 are the characteristics of the

linear equation 𝜉

4 + p𝜉2 + 1 = 0. As x → −∞, solutions must remain bounded and

therefore A2 = A4 = 0. This leads to the outset condition,
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u1 = A1e−𝜉1L + A3e−𝜉2L and u′1 = A1𝜉1e−𝜉1L + A3𝜉2e−𝜉2L. (14)

Solving for A1 and A3 enables solutions for u1 and u′1 to be computed. The process

is repeated at x = xN = L, where the inset condition (A1 = A3 = 0) is imposed.

4.2 Numerical Experiments

The dynamic behaviour of (11) under different rates of applied end-shortening 𝜌

is next investigated. An error convergence study indicates that a uniform FE mesh

with N = 70 over length L = 30 is suitably accurate and efficient. The quintic coeffi-

cient of (8) was taken as 𝛼 = 0.3, allowing comparisons with the stationary solutions

of Fig. 2 as computed in Sect. 3. Figure 3 shows a series of numerical solutions for

increasing rates of loading from top to bottom: 𝜌 = 10−4, 10−3 and 10−2 respec-

tively. To avoid the system becoming locked in the trivial equilibrium state, all runs

are seeded by an incremental displacement into a symmetric localised shape.

First we make some general observations:

∙ For rates of end-shortening 𝜌 < 10−4 say, the system is quasi-static. Jumps between

near-equilibrium states occur immediately or soon after stability is lost.

∙ Increasing 𝜌 mean that solutions tend to drift from the static state, and can also

delay the unstable jumps so they occur with increasing as well as decreasing load.

∙ Behaviour at high rates is dominated by the dynamics. Significantly, a high rate

can lead to a jump being by-passed, so the system can remain in a symmetric or

anti-symmetric state even when its stationary counterpart has become unstable.

Figure 3 suggests a change in rate causes a dynamical jump to drift, but it is also

possible for it to change suddenly at a dynamical bifurcation. Figure 4 shows solu-

tion paths for two rates, 10−7 apart, found via a root searching algorithm, bounding

the critical rate 𝜌

∗ ≃ 1.6135 × 10−4. This is explored phenomenologically later in

Fig. 6.

5 Evolutionary Galerkin Procedure and Energy Landscape

To help interpret the dynamics it is useful to model the system with just a single

degree of freedom. We thus decompose the description into linear combinations of

the symmetric and anti-symmetric stationary modes at the given 𝛥 = 𝜌t, as follows,

ũ(x, t) = qs(t)𝜓s(x, t) + qa(t)𝜓a(x, t). (15)
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Fig. 3 Load p against end-shortening 𝛥 at rates 𝜌 = 10−4 (top), 10−3 (middle), 10−2 (bottom), com-

pared against stationary solutions of Fig. 2. Inset plots show solutions profiles at positions indicated

where 𝜓i are the mode shapes of Fig. 2, with amplitudes qi. End-shortening is now,

𝛥 = 𝜌t = 1
2 ∫X

ũ′2 dx = 1
2
q2s ∫X

𝜓

′2
s dx + 1

2
q2a ∫X

𝜓

′2
a dx (16)

at time t, where X is the (long) domain over which the modeshapes are computed.

Since
1
2
∫ 𝜓

′2
s dx and

1
2
∫ 𝜓

′2
a dx compute to the same value independently, qs and



www.manaraa.com

524 M.K. Paesold et al.

0 0.5 1 1.5 2 2.5 3

1.2

1.4

1.6

1.8

2

0 0.5 1 1.5 2 2.5 3

1.2

1.4

1.6

1.8

2
р р

Δ Δ

Fig. 4 Numerical evidence of a dynamical bifurcation at a critical rate 𝜌

∗ ≃ 1.6135 × 10−4, at

which solution branching occurs at 𝛥
∗ ≃ 2.274. Plots shows 𝛥 against p of the dynamic paths blue

(solid) and the primary stationary states (thin-dashed) for 𝜌 = 1.613 × 10−4 (left); 𝜌 = 1.614 ×
10−4 (right)

qa lie on the unit circle. Thus qa =
√

1 − q2s and the system has a single degree of

freedom. Energy levels can then be computed directly from (4).

Substituting (15) into (8) gives

q̇s𝜓s + qs�̇�s + q̇a𝜓a + qa�̇�a = −
(
qs𝜓 ′′′′

s + qa𝜓 ′′′′
a + p(qs𝜓 ′′

s + qa𝜓 ′′
a ) + fe(qa𝜓a + qs𝜓s)

)
.

(17)

Evolution equations for the qi are found by multiplying by the corresponding 𝜓i and

integrating over the domain X. These, along with the constraint equation, lead to the

following governing equations, written in matrix form,

[
A 0

2tQT 0

] [
̇Q
ṗ

]
= −

[
(B − pC)Q + D + 1

2
̇AQ

QTQ − 1

]
(18)

where Q = [qs; qa]. A, B, C and D are defined by (12) but with the 𝜙i replaced

by 𝜓i. Load p is fixed by the constraint condition (16) which, after differentiating

with respect to time yields the bottom row in (18). We note, in contrast to the FE

formulation, the appearance of momentum-like terms due to variations of the shape

functions with time.

The constrained gradient flow equation (8) is thus reduced to three DAEs of index-

1, which again can be solved using MATLAB’s inbuilt function ode23s. To avoid

the system sitting unrealistically on an energy maximum, zero values of qs or qa
are replaced by the small non-zero quantity +10−12, the positive sign ensuring that

solutions are all found in the first quadrant of the unit circle. Typical dynamical

outcomes are seen in Fig. 6 later.

Figure 5 shows contours of the change in energy from the symmetric state, as

computed from (4), at different but constant values of 𝛥. This is plotted against the

polar angle 𝜃 on the unit circle (qs = cos 𝜃, qa = sin 𝜃), with the darker regions rep-

resenting higher energies. Sections at constant 𝛥 are shown on the right. For small

𝛥, as seen in the bottom and middle slices, the symmetric form is preferred while

the anti-symmetric form changes from a global maximum to a local minimum. As 𝛥

is increased, the symmetric form first relinquishes its status as the global minimum
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Fig. 5 Left energy landscape. Right three sections at different 𝛥 values, that embrace a region of

bistability and illustrate transfer of stability from symmetry to anti-symmetry
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Fig. 6 Dynamical paths from a start close to the symmetric shape at different rates. The ridge line

of equilibria associated with the second ladder of Fig. 2 is shown in black

(somewhere around 𝛥 = 2.18), and then evolves into a local maximum as seen at

the top. When symmetric and anti-symmetric minima coexist the system is bistable,

and we note the appearance then of a third equilibrium state in the form of a local

maximum; this reflects the first ladder of Fig. 2.
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As seen in Figs. 3 and 4, typical dynamical responses of the PDE can be subject to

dynamical bifurcations. The reduced view of Fig. 5 is useful in describing how this

comes about. Figure 6 shows a set of runs at differing rates on the landscape of Fig. 5,

all starting from the same position close to the symmetric state. After venturing into

the mixed region the runs either return to the symmetric state, or veer off to the anti-

symmetric one. The critical rate 𝜌

∗ ≃ 8.2077455491 × 10−4 defines the transition,

and the difference between the two closest diverging paths is 𝛥𝜌 = 10−15. Separa-

tion occurs close to, but not coincident with, the ridge line, the difference being due

to the (small) velocity component provided by the rate 𝜌. Starts from closer to the

symmetric state bifurcate at a lower critical rate and closer to the ridge line.

6 Concluding Remarks

We have presented two models for the nonlinear visco-elastic system of Fig. 1, a

multi degree-of-freedom FE formulation, and a single degree-of-freedom evolu-

tionary Galerkin procedure based on static modal shapes obtained from the path-

following routine AUTO [10]. According to the associated dynamical responses,

the two models show good qualitative agreement at low rates of end-shortening.

The pure symmetric and anti-symmetric snaking equilibrium paths and associated

modeshapes are the same, but the ladder equilibrium states of Fig. 2, being based

on these pure forms, fail to match precisely. The first ladder extends over the range

2.157 < 𝛥 < 2.198 for the FE model, for example, whereas for the Galerkin it cov-

ers 1.90 < 𝛥 < 2.35. Better accuracy could be obtained with the addition of further

shapes derived from the ladders, but this would be at the expense of simplicity.

The single degree-of-freedom Galerkin model is shown to be a useful phenom-

enological tool. The reduction allows the dynamics to be seen as movement on a 2D

surface, with velocity governed by a constant rate of end-shortening on one dimen-

sion and visco-elastic flow in the other. The benefit is neatly demonstrated by Fig. 6,

which shows visually how a dynamical bifurcation associated with the energy max-

ima of the ladder equilibrium states comes about, and thus provides the key ingre-

dient for many chaotic situations. It is interesting to see that in this instance there

is an intimate link to the spatial chaos of the snakes-and-ladders scenario. We are

of course aware that the solution of a nonlinear PDE is not exactly expressible as a

linear combination of two stationary states, but the numerical evidence suggests that

the stationary states are such strong attractors (in terms of the energy surface) that

the process does offer a fair and highly illustrative new interpretation.
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Coupled Phenomena and Instability
in Fault Zones

Jean Sulem and Ioannis Stefanou

Abstract In the last 20 years, it has been recognized that multiphysics couplings
play a major role in earthquake nucleation and seismic slip. On the basis of field
observations, laboratory experiments and advanced modeling, the detailed study of
coupled processes has brought some new insights in the understanding of earth-
quake mechanics that are reviewed in this paper.

Keywords Faults ⋅ Earthquakes ⋅ Multiphysics couplings ⋅ Strain localization

1 Introduction

The study of earthquake mechanisms has shown that earthquakes appear to be the
result of a frictional instability and occur by sudden slippage along a pre-existing
fault or at plate interface. The thickness of the slip zones of major recent earth-
quakes have been identified in several drilling programs in active faults. All the
field observations confirm that slip during individual earthquake is localized along
extremely thin slip zones; for example: 1 mm for the principal slip zone (PSZ) in
Nojima fault (Kobe earthquake, Japan, 1995, [1]) and few mm for the PSZ in
Chelungpu fault (Chi Chi earthquake, Taiwan, 1999, [2]).

The seismic cycle is commonly modelled as a stick-slip mechanism on the basis
of a simple conceptual model of a ‘spring-slider system’ [3] where the spring
represents the elasticity of a crustal block under tectonic remote loading in which a
narrow fault zone is embedded and sheared. Stick-slip instability is possible as soon
as the softening rate of the frictional resistance at the interface between the block
and the fault is larger than the stiffness of the spring. Thus a key factor for the
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nucleation of seismic slip is how the shear resistance of the fault weakens with
slip. In the following, we will examine various weakening mechanisms of fault
resistance during seismic slip. Considering the extreme thinness of the localized slip
zone, it is expected that thermal weakening processes might be of major importance
[4, 5].

2 Weakening Mechanisms During Seismic Slip

The fault zone mineralogy plays a major role in the acceleration of the slip process.
We generally distinguish between fault gouge for which the friction resistance
increases with slip rate as observed in the presence of abundant clay minerals and
fault gouge which are velocity weakening as commonly observed in limestone
units. However, even if clay rich zones may prevent from sudden seismic rupture
because they exhibit velocity strengthening at low slip velocity, they can dramat-
ically weaken at high slip velocity, so that a rupture propagating from depth might
not be arrested in clay-rich sediments. The Tohoku earthquake in 2011 in Japan
with a magnitude of 9.1 is an example of a large rupture that propagated up to the
surface through a fault zone composed primarily of clays and that was believed to
be seismically stable.

It has been proposed that slip weakening of seismic faults is caused by
thermally-activated processes triggered by localized frictional heating and high
temperatures attained in the slip zone [6]. Among the weakening mechanisms that
affect the fault resistance, the drop of the friction coefficient with slip and/or slip
rate, or with temperature is related to different physical processes. Among them,
flash heating at micro-asperity contacts [6, 7] appears to be a general weakening
mechanism for most rocks at the early stages of slip, once a critical slip rate in the
range of 0.01–0.1 m/s is overcome. Lubrication of the fault plane, in relation with
the formation of a macroscopic melt layer or a ‘gel-like’ layer in wet silica rich fault
zones, and the production of nano-particles during slip [8] is also responsible for the
dynamic drop in friction. Considering the ubiquitous presence of fluids in fault
zones, thermal pressurization of the pore fluid within the fault core by frictional
heating reduces the effective normal stress acting on the fault and hence the shear
strength [6, 9–11]. Thermo-poro-mechanical couplings due to shear heating can be
also associated to chemical effects such as dehydration of minerals or decompo-
sition of carbonates [12–14]. Such reactions induce two competing effects: a direct
increase in pore pressure because they these reactions release fluid in the system
and a limit in temperature increase because are endothermic so that part of the
frictional heat is actually absorbed by the chemical reactions. On the other hand
they can form a mineral assemblage stronger (reaction hardening) or weaker (re-
action weakening) than the original material. Although quite scarce, the presence of
pseudotachylites which are melted rock has been reported in fault zones [1, 15] with
intrusion patterns indicating that the melts behaved like a viscous fluid under high
pressure that could fracture the rock.
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Evidence of the occurrence of thermal decomposition of hydrous minerals
during seismic slip with a release of water, and of carbonates with a release of CO2

has been reported in many field observations of active crustal faults. Observations
of thermal decomposition of minerals have also been reported in exhumed faults.
For example Collettini et al. [16] have documented an outcrop exhumed from 2 to
3 km depth in the Spoleto thrust fault in Central Italy. A principal slip zone with a
thickness of 0.3–1 mm has been identified. The accumulated displacement was
estimated between 5 and 10 km. This slip zone shows evidence of calcite decar-
bonation and illite-smectite dehydration.

3 Modelling Weakening Mechanisms During Seismic Slip

In order to highlight the dominant phenomena that occur during seismic slip, we
consider a rapidly deforming and infinitely long layer of thickness h consisting of
fluid-saturated material.

The 1D model is justified by the fact that the length scales in the direction
parallel to the fault, over which the thermo-poro-mechanical fields vary, are much
larger than in the direction normal to it. In this 1D-model the velocity components,
ux(z, t), and uz(z, t) in the direction parallel and normal to the fault respectively
depend only on the time since the onset of slip and of the position z in the direction
normal to the band. An overall slip-rate V is imposed in the x-direction, as shown in
Fig. 1. Inside such a shear-band the pore pressure p and the temperature T are
assumed to be functions only of time t and of the position z in the direction normal
to the band.

The governing equations of the system are the balance laws of linear momentum,
mass and energy. The balance of linear momentum leads to constant shear and total
normal stresses inside the layer. The fluid mass balance equation is the sum of
several terms: the diffusion term, the thermal pressurization term, the chemical
effect of mineral decomposition corresponding to the mass of the fluid released in
the system by the reaction and also the term corresponding to the effect on pore

Fig. 1 Model of a of fault
zone as an infinite layer under
uniform shear strain rate
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pressure of inelastic porosity change (compaction or dilatancy and also porosity
change due to the mineral decomposition):

∂p
∂t

= chy
∂
2p
∂x22

+Λ
∂T
∂t

+
1

ρf β
*

∂md

∂t
−

1
β*

∂np

∂t
−

1
β*

∂nd
∂t

ð1Þ

In Eq. (1), chy is the hydraulic diffusivity, Λ= n λf − λn
� �

̸β* is the undrained
thermal pressurization coefficient, where λf is the pore fluid thermal expansion
coefficient and λn is the thermal expansion coefficient of the pore volume, and n is
the porosity of the rock. β* is the storage capacity, md is the mass per unit volume
of the fluid released in the system by mineral decomposition, ∂np ̸∂t is the rate of
inelastic porosity change and ∂nd ̸∂t is the rate of porosity change due to mineral
decomposition. Typical values for Λ range from 0.1 to 1 MPa/°C [17].

The energy balance is the sum of the diffusion term, the source term corre-
sponding to the frictional heat and also the term corresponding to the energy
consumed in the reaction (with a sign minus here for an endothermic reaction):

∂T
∂t

= cth
∂
2T
∂x22

+
1
ρC

τγ ̇p0 −
1
ρC

ΔHT
∂md

∂t
ð2Þ

In Eq. (2), cth is the thermal conductivity, ρC is the specific heat, τγ ̇p0 is the plastic
work, which is assumed to be entirely converted into heat and ΔHT is the enthalpy
change per unit mass of the dehydration mineral. For endothermic reactions,
ΔHT >0. The shear stress τ is proportional to the effective Terzaghi stress:
τ= f σn − p0ð Þ where f is the friction coefficient. Part of the frictional energy is
absorbed in the chemical reaction, which limits the temperature increase due to shear
heating. Sulem and Famin [13] have proposed the first theoretical study on the
mechanical effect of calcite thermal decomposition (CaCO3 (calcite)→ CaO
ðlimeÞ+CO2 (carbon dioxyde)) on a fault layer of given thickness during seismic
slip. The effect of porosity change due to the solid decomposition on the permeability
has been accounted for assuming a Carman Kozeny porosity-permeability relation-
ship. Typical results are shown in Fig. 2: (i) the endothermic chemical reaction limits
the co-seismic temperature rise to a value which is controlled by the reaction kinetics;
(ii) pore pressure increase is first due to thermal pressurization and then accelerates at
the onset of the reaction up to a maximum and then decreases due to the reduction of
solid volume and of the fluid diffusion process (pore pressure pulse). This results in a
dynamic initial weakening of the shear strength followed by a re-strengthening.

Several investigations have shown that the ultracataclastic gouge zones forming
the fault core have a much lower permeability (<10−19 m2) than that in the sur-
rounding damage zone [18, 19]. In the above computations, the initial permeability
of the slip zone was taken equal to 10−19 m2. The friction coefficient was taken
equal to 0.1 in accordance with high velocity friction experiments that show that
during coseismic slip the friction coefficient is low [8, 20].
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The observation that endothermic chemical reactions might buffer the temper-
ature of fault zones during seismic slip leads to the conclusion that the activation of
other weakening mechanisms such as melt lubrication might be inhibited. High
temperature rise limitation by thermal decomposition would provide another
explanation to the notorious absence of positive heat flow anomaly on active crustal
faults such as San Andreas [9]: a large part of the heat produced by friction would
be consumed by endothermic reactions.

Shear heating, thermal pressurization and thermal decomposition of carbonates
are weakening mechanisms that can also explain large landslides. The Heart
Mountain landslide of northwest Wyoming is the largest known sub-aerial landslide
on Earth. This Eocene age landslide covers more than 3000 km2 with a very long
runabout of more than 45 km [21]. An intriguing question is how such a massive
volume of rock could have moved across a basal surface with an average regional
dip of only 2°. Field observations and experiments on rocks taken from the land-
slide have shown that since the shear zone of the Heart Mountain slide is located
within a dolomite layer, thermal decomposition and release of CO2 induced by flash
heating occurs, allowing a huge upper plate rock to slide over a ‘cushion’ of
pressurized material [22, 23].

4 Chemical Weakening and Earthquake Nucleation

An interesting situation corresponds to shear localization in a chemically weakening
material. This case is relevant for understanding the nucleation of intermediate and
deep earthquakes within subduction zones. As discussed by Green [24], deep
earthquakes have been a paradox since their discovery in the 1920s. The combined
increase of pressure and temperature with depth precludes brittle failure or frictional
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sliding beyond a few tens of kilometers. Nevertheless, earthquakes still occur in
subduction zones to 700 km. Growing evidence suggests that the great majority of
subduction zone earthquakes shallower than 400 km are initiated by breakdown of
hydrous phases and that deeper ones probably initiate as a shearing instability
associated with breakdown of metastable olivine to its higher-pressure polymorphs.
In the case of serpentinite dehydration, the reaction products may be weaker. This is
the case for the dehydration of lizardite for which the produced ultra-fine grained
olivine is weaker than the serpentinite aggregates [25]:

5Mg3Si2O5ðOH)4
lizardite

→ Mg3Mg4Si4O10ðOH)10
talc

+ 6 Mg2SiO4
olivine

+ 9 H2O ð3Þ

This leads to a self-lubrication of the fault by the newly formed material. The
intrinsic reaction-weakening process assumed here is thus an interesting possibility
for dehydration-induced earthquakes at intermediate depths. Brantut and Sulem
[26] have assumed a simple evolution law for the friction coefficient f in order to
describe chemical weakening during dehydration:

f = f0 + a ln γ ̇ ̸γ0̇ð Þ− bμ ð4Þ

where f0 is a reference friction coefficient for a reference strain rate γ ̇0 and a and
b are positive constitutive parameters. This friction law is similar to the commonly
used Rate and Stae Friction (RSF) laws where the ‘state’ is identified as the reaction
extent μ. The reaction rate is assumed to be of first order following an Arrhenius
law. It can be linearized close to the critical temperature Tc at which the reaction is
triggered:

∂μ

∂t
≈ 0 if T < Tc

cT T −Tcð Þ− cμμ if T ≥ Tc

�
ð5Þ

The linear stability analysis of undrained adiabatic shearing of a layer consid-
ering the above dehydration reaction is presented in detail in [26, 27]. It gives the
following expression for the critical wavelength (smallest wave length for which the
growth coefficient of the instability is positive):

λchcr =2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
acth
γ0̇

ρC
bτ0

cμ
cT

s
ð6Þ

In order to illustrate this analysis, we use the parameter values given in Table 1.
They are taken from [26] for lizardite dehydration of a layer at 30 km depth, which
is sheared at a very low strain rate of 10−6 s−1. In Fig. 3, the growth coefficient s of
the instability mode is plotted in terms of the perturbation wave length. The smallest
wave length for which s becomes positive is given by Eq. (6).
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It is worth investigating the evolution of the localization zone in a simple case of
a gouge layer of 5 m thickness. An initial small perturbation of the shear strain field
is imposed with a wavelength equal to the gouge thickness. According to Fig. 3,
this wave length is unstable. In particular, the critical wave length given by (6) is
0.12 m.

Figure 4a shows the evolution of the shear stress and of the shear strain rate in
the middle of the localization zone. The numerical problem is discretized in space
with finite differences and integrated in time using an adaptive scheme with
Mathematica© ODE solver. Figure 4b presents the profile of the shear strain at
various time instants showing the localization and the de-localization process when
the reaction is depleted. Note that in this example, a very low strain rate corre-
sponding to a subducting slab was assumed. For this strain rate and due to partial
dehydration (the material in the middle is depleted but not in the adjacent zones)
chemical traveling waves are triggered and travel towards the boundaries of the
gouge layer. Figure 4c depicts the temperature increase due to shearing in the
middle of the shear band. It is worth mentioning that after a point the (endothermic)
chemical reaction buffers the temperature rise. Figure 4d shows the evolution of the
chemical reaction and the pore pressure increase in the middle of the shear band.

Table 1 Parameter values for lizardite dehydration at a depth of around 30 km (from [26])

Quantity Value

Friction coefficient, f0 0.6
Rate strengthening parameter, a 0.002
Reaction weakening parameter, b 0.5
Specific heat capacity, ρC 2.7 MPa °C−1

Thermal dependency of the chemical kinetics, cT 2.58 × 10−7 °C−1 s−1

Depletion dependency of the chemical kinetics, cμ 2.12 × 10−6 s−1

Initial shear stress, τ0 240 MPa
Nominal strain rate, γ ̇0 10−6 s−1

Thermal pressurization coefficient, Λ 0.5 MPa °C−1

Thermal diffusivity, cth 10−6 m2 s−1

Hydraulic diffusivity, chy 10−6 m2 s−1

Fig. 3 Growth coefficient
(Lyapunov exponent) in terms
of perturbation wavelength
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5 Conclusion

We have presented the framework of localized failure in earthquake rupture as the
result of instability of the deformation process. Frictional heating, thermal weak-
ening, rock comminution and fault lubrication by the production of nano-particles,
pore fluid pressurization and thermal decomposition of minerals are weakening
mechanisms can trigger strain localization and acceleration of the seismic
slip. These endothermic chemical reactions also influence the energy budget of the
system as they limit the coseismic temperature rise and inhibit other thermal
weakening mechanisms such as melting. The actual shear band thickness plays a
major role in the energy budget of the system as it controls the feedback of the
dissipative terms in the energy balance equation. It is known that it is necessary to
introduce a localization limiter in order to obtain a finite thickness for the localized
shear zone. Rate independent constitutive models for a classical (Cauchy) contin-
uum lead to an infinitesimally thin zone. On the contrary, a rate dependent friction
law or a Cosserat framework lead to a finite value for the critical wave length of the
perturbation, above which, homogeneous deformation is unstable [27].

Fig. 4 Strain localization due to chemical softening in a 5 m thick dehydrating gouge layer:
a Shear stress drop in the middle of the shear band and shear strain evolution. The system localizes
to a narrow band because of dehydration, but then it delocalizes due to depletion; b Evolution of
shear band localization—profile of shear strain rate; c Temperature and pore pressure increase in
the middle of the shear band. The chemical reaction buffers temperature rise; d Evolution of the
chemical reaction in the middle of the shear band. At tγ0̇ ≃ 0.1, the reaction effects become
important and the material is rapidly depleted in the middle of the gouge (μ → 1) until tγ0̇ ≃ 0.3.
Due to partial depletion, chemical shock waves are triggered and travel towards the boundaries of
the gouge
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A challenging issue is the modelling of coupled thermo-chemo-hydro-mechanical
phenomena with evolution of the microstructure of the material through various
mechanical and chemical processes.

References

1. Otsuki, K.: Fluidization and melting of fault gouge during seismic slip: Identification in the
Nojima fault zone and implications for focal earthquake mechanisms. J. Geophys. Res. 108
(B4), 2192 (2003)

2. Kuo, L.W., Hsiao, H.C., Song, S.R., Sheu, H.S., Suppe, J.: Coseismic thickness of principal
slip zone from the Taiwan Chelungpu fault Drilling Project-A (TCDP-A) and correlated
fracture energy. Tectonophysics 619–620, 29–35 (2014)

3. Scholz, C.H.: The Mechanics of Earthquakes and Faulting, 2nd edn. Cambridge University
Press, Cambridge (2002)

4. Rice, J.R., Rudnicki, J.W., Platt, J.D.: Stability and localization of rapid shear in
fluid-saturated fault gouge: 1. Linearized stability analysis. J. Geophys. Res. Solid Earth
(2014)

5. Platt, J.D., Rudnicki, J.W., Rice, J.R.: Stability and localization of rapid shear in
fluid-saturated fault gouge, 2. Localized zone width and strength evolution. J. Geophys.
Res. Solid Earth n/a–n/a (2014)

6. Rice, J.R.: Heating and weakening of faults during earthquake slip. J. Geophys. Res. Solid
Earth 111(5) (2006)

7. Beeler, N.M., Tullis, T.E., Goldsby, D.L.: Constitutive relationships and physical basis of
fault strength due to flash heating. J. Geophys. Res. 113(B1), B01401 (2008)

8. Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco,
M., Shimamoto, T.: Fault lubrication during earthquakes. Nature 471(7339), 494–498 (2011)

9. Lachenbruch, A.H., Sass, J.H.: Heat flow and energetics of the San Andreas Fault Zone.
J. Geophys. Res. 85(B11), 6185 (1980)

10. Mase, C.W., Smith, L.: Effects of frictional heating on the thermal, hydrologic, and
mechanical response of a fault. J. Geophys. Res. 92(1), 6249 (1987)

11. Sulem, J., Lazar, P., Vardoulakis, I.: Thermo-poro-mechanical properties of clayey gouge and
application to rapid fault shearing. Int. J. Numer. Anal. Methods Geomech. 31(3), 523–540
(2007)

12. Brantut, N., Sulem, J., Schubnel, A.: Effect of dehydration reactions on earthquake nucleation:
Stable sliding, slow transients, and unstable slip. J. Geophys. Res. 116(B5), 1–16 (2011)

13. Sulem, J., Famin, V.: Thermal decomposition of carbonates in fault zones: slip-weakening
and temperature-limiting effects. J. Geophys. Res. 114(B3), 1–14 (2009)

14. Veveakis, M., Poulet, T., Alevizos, S.: Thermo-poro-mechanics of chemically active creeping
faults: 2. Transient considerations. J. Geophys. Res. Solid Earth 119(6), 4583–4605 (2014)

15. Di Toro, G., Nielsen, S., Pennacchioni, G.: Earthquake rupture dynamics frozen in exhumed
ancient faults. Nature 436(August), 1009–1012 (2005)

16. Collettini, C., Viti, C., Tesei, T., Mollo, S., Collettini, C., Viti, C., Tesei, T., Mollo, S.,
Nazionale, I., Murata, V.: Thermal decomposition along natural carbonate faults during
earthquakes. Geology (2013)

17. Ghabezloo, S., Sulem, J.: Stress dependent thermal pressurization of a fluid-saturated rock.
Rock Mech. Rock Eng. 42(1), 1–24 (2008)

18. Wibberley, C.A.J., Shimamoto, T.: Internal structure and permeability of major strike-slip
fault zones : the Median Tectonic Line in Mie Prefecture, Southwest Japan. J. Struct. Geol. 25
(2003)

Coupled Phenomena and Instability in Fault Zones 537



www.manaraa.com

19. Sulem, J., Vardoulakis, I., Ouffroukh, H., Boulon, M., Hans, J.: Experimental characterization
of the thermo-poro-mechanical properties of the Aegion Fault gouge. Comptes Rendus
Geosci. 336(4–5), 455–466 (2004)

20. Di Toro, G., Goldsby, D.L., Tullis, T.E.: Friction falls towards zero in quartz rock as slip
velocity approaches seismic rates. Nature 427(January), 774–777 (2004)

21. Hauge, T.A.: The Heart Mountain detachment, northwestern Wyoming; 100 years of
controversy. In: Snoke, A.W., Steidtmann, J.R., Roberts, S.M. (eds.) Geology of Wyoming:
Memoir. Geological Survey of Wyoming, pp. 530–571. Laramie, WY (1993)

22. Goren, L., Aharonov, E., Sparks, D., Toussaint, R.: Pore pressure evolution in deforming
granular material: a general formulation and the infinitely stiff approximation. J. Geophys.
Res. 115(B9), B09216 (2010)

23. Mitchell, T.M., Smith, S.A.F., Anders, M.H., Di Toro, G., Nielsen, S., Cavallo, A., Beard, A.
D.: Catastrophic emplacement of giant landslides aided by thermal decomposition: Heart
Mountain, Wyoming. Earth Planet. Sci. Lett. 411, 199–207 (2015)

24. Green, H.W.: Shearing instabilities accompanying high-pressure phase transformations and
the mechanics of deep earthquakes. Proc. Natl. Acad. Sci. U.S.A. 104(22), 9133–9138 (2007)

25. Rutter, E.H., Brodie, K.H.: Experimental ‘sytectonic’ dehydration of serpentinite under
conditions of controlled pore water pressure. J. Geophys. Res. 93(B5), 4907 (1988)

26. Brantut, N., Sulem, J.: Strain localization and slip instability in a strain-rate hardening,
chemically weakening material. J. Appl. Mech. 79(3), 31004 (2012)

27. Sulem, J., Stefanou, I.: Thermal and chemical effects in shear and compaction bands.
Geomech. Energy Environ. 6, 4–21 (2016)

538 J. Sulem and I. Stefanou



www.manaraa.com

Modelling Grain Damage Under Plane
Strain Compression Using a Micro-polar
Continuum

Erich Bauer, Linke Li and Mohammadkeya Khosravi

Abstract A novel concept for modelling the influence of grain damage on the
reduction of the mean grain diameter and consequently on the compaction beha-
viour and incremental stiffness is proposed. Herein the constant solid hardness in
previous models is replaced by a pressure dependent stiffness factor. The change of
grading of the grain sizes caused by grain damage is reflected in a simplified
manner by a reduction of the mean grain diameter. In order to distinguish the effect
of the loading path on the evolution of grain damage the evolution equations for the
solid hardness and the mean grain diameter are decomposed into parts reflecting the
influence on isotropic and deviatoric loading. The mean grain diameter is embedded
as the internal length in the micro-polar hypoplastic model. Numerical simulations
of the influence of grain damage on the compaction behaviour are carried out for
biaxial compression tests. The results show that for the case of shear strain local-
ization the reduction of the stiffness factor and the mean grain diameter is more
pronounced in the shear band than outside of this zone.

1 Introduction

The mechanical behaviour of granular materials is mainly dictated by the grain size
distribution, the grain shape, the surface roughness, the initial density and the
loading path. Under higher stresses the mechanical behaviour is also influenced by
grain damage in the form of grain abrasion and grain fragmentation. The amount of
grain damage does not only depend on the pressure level but it is also influenced by
the loading path. Grain damage leads to a change of the grading of the grain sizes
and as a consequence to a reorientation of grains within the grain skeleton towards a
denser state. Only little experimental data is available in the literature, so that
numerical simulations are a possibility to gain deeper insight into the mechanisms
of grain damage.
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For the constitutive modelling of the influence of grain damage under large
monotonic shearing a concept based on a micro-polar continuum was recently
proposed by Bauer et al. [1] and Bauer [2]. The numerical investigations show, that
for shearing under nearly constant mean pressure, micro-polar effects like abrasion
and grain crushing caused by particle rotations and curvatures are the dominant
causes of grain damage in zones of pronounced shear strain localization. In the
present paper an extended concept with the focus on the influence of the amount of
stress on grain damage is considered. The additional compaction behaviour caused
by grain damage is reflected using a pressure dependent stiffness parameter as a key
parameter for modelling the reduction of the incremental stiffness. In order to
distinguish the effect of the loading path on grain damage the evolution equations
for the reduction of the stiffness parameter and the mean grain diameter are
decomposed into terms reflecting the influence of the isotropic and deviatoric part
of the stress tensor. The concept proposed for the stress dependent reduction of the
stiffness parameter and the mean grain diameter is implemented in the micro-polar
hypoplastic model by Huang et al. [3]. In order to demonstrate the influence of
particle damage numerical simulations of biaxial compression tests are performed.

2 Compaction Behaviour and Reduction of the Mean
Grain Diameter Under Increasing Mean Pressure

To model the change of the current void ratio e of a cohesionless granular material
for a monotonic increase of the mean pressure, p= − σii ̸3, the following isotropic
compression law was proposed by Bauer [4]:

e= e0 exp − ð3p ̸hsÞn½ �. ð1Þ

Herein e0 denotes the initial void ratio for p=0. hs is the so-called solid hard-
ness, which is defined for the grain assembly, where the compression curve in a
semi-logarithmic representation shows the point of inflection. Parameter n is related
to the inclination of the compression curve (Fig. 1a). It is obvious that hs is a key
parameter for describing the compaction behaviour of the granular material under
isotropic compression. Equation (1) can approximate the behaviour for an unlim-
ited pressure range and thus it also reflects the history and the effect of grain
damage on the compaction behaviour. Depending on the strength of the grains the
value for the solid hardness ranges between 10 MPa and 300 MPa. Isotropic
compression tests with such high stresses are not usually standard in soil mechanics
laboratories, so that hs is commonly correlated to the compression curve obtained
from a high pressure oedometer test. Numerical simulations indicate that for high
stresses the difference between isotropic and oedometric compression is usually
small and can be neglected for practical applications.

If the maximum stress in the compression experiment is lower than hs, the
adaptation of Eq. (1) to the experimental data usually results in a much higher value
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of hs. For Karlsruhe sand, for instance, a solid hardness of hs =5800 MPa was
reported to reflect the experimental data for a low pressure range [5], while a value
of hs =190 MPa was obtained for a high pressure test [4]. The higher hs is relevant
for the pressure range where grain crushing is negligibly small, while the lower hs is
related to a pressure range where grain crushing becomes dominant. In this context
it is of interest to discuss the results of DEM simulations by Laufer [6], which are
illustrated in a simplified manner in Fig. 1b. For the assumption of unbreakable
particles, the compaction behaviour is small and determined by the properties of the
contact points and the reorientation of the particles into a denser state. However,
when particle crushing is taken into account, the DEM simulation of monotonic
compression up to a large pressure range shows a behaviour similar to the one
observed in real experiments. These results suggest that it makes sense to replace
the constant solid hardness hs in Eq. (1) with the pressure dependent stiffness
parameter, hsp. To this end the following evolution equation for a decrease of the
stiffness parameter with an increase of the mean pressure is proposed:

hṡp = − ðp ̇ ̸pÞð3p ̸bopÞnophsp. ð2Þ

Herein, hṡp and p ̇ denote the rates of hsp and p, respectively, and bop and nop are
constitutive constants. Integration of Eq. (2) leads to the pressure dependent stiff-
ness parameter hsp = hspðpÞ. Replacing the constant solid hardness in Eq. (1) with
the stress dependent stiffness parameter hsp one obtains:

e= e0 exp − ð3p ̸hspÞn
� �

. ð3Þ

For bop =457, nop = − 0.31, an initial void ratio of eo =1.01 for p =100 Pa and
an initial stiffness parameter of hso =5800 MPa, the reduction of the void ratio with
an increase of the mean pressure is shown in Fig. 2a together with experimental
results obtained by Bauer [4].

Fig. 1 Illustration of monotonic compression: a compression law of Eq. (1), b behaviour with
and without grain crushing
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In the following the influence of grain damage on the change of the grain size
distribution is taken into account in a simplified manner by reducing the mean grain
diameter d50. To this end the following evolution equation is proposed:

d5̇0p = − b50pn50pðp ̇ ̸pÞð3p ̸hspÞn50pd50p. ð4Þ

Herein, the change of the mean grain diameter is also related to the current value
of hsp. b50p and n50p are constitutive constants which can be calibrated based on
compression tests. As hsp is higher for lower pressures, the change of the mean
grain diameter is also smaller within the lower pressure range.

3 Reduction of hs and d50 Under Deviatoric Loading

To model the influence of deviatoric loading on grain damage the following evo-
lution equation is proposed for the rate of the stiffness parameter:

hṡd = − ðbsd ̸hsdÞ σ ̇*symm ̸bod
�� �� σ*symm ̸bod

�� ��hsd, ð5Þ

and for the rate of the mean grain diameter:

d5̇0d = − bd50d σ ̇*symm ̸b50od
�� �� σ*symm ̸b50od

�� ��d50d. ð6Þ

Herein the norm of the stress deviator, σ*symm, is computed from the symmetric
part of the stress tensor. bsd, bd50d and b50od are constitutive constants.

Fig. 2 Influence of the pressure level p on the reduction of a the void ratio e (dots are
experimental data by Bauer [4]); b the mean grain diameter d50
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4 Micro-polar Description of Grain Damage

In order to take into account the effect of abrasion and damage caused by the
rotation resistance of grains on the reduction of hs and d50 hypothetical evolution
equations were recently proposed within the framework of a micro-polar continuum
[1, 2]. With respect to Eqs. (2–6) these evolution equations for h*s and d50 can be
extended as follows:

h
*̇
s = − bκ κ ̇k k+ bω ω̇c

3 −ω3̇
�� ��+ p ̇

p
3p
bop

� �nop

+
bsd
h*s

jσ ̇*symmjjσ*symmj
b2od

� 	
h*s , ð7Þ

and

d5̇0 = − bκ κ ̇k k+ bω ω̇c
3 −ω3̇

�� ��+ b50pn50p
p ̇
p

3p
h*s

� �n50p

+ bd50d
jσ*̇symmjjσ*symmj

b250od

� 	
d50.

ð8Þ

Herein d50 and h*s are the current values of these state quantities. κ ̇k k denotes the
norm of the rate of the curvature, and ω̇c

3 −ω3̇
�� �� denotes the norm of the difference

of the rate of the micro- and macro-rotations. Factors bκ and bω are constitutive
constants. Equations (7) and (8) are embedded into the micro-polar hypoplastic
model by Huang et al. [3]. For the extended model the evolution equations for the
objective stress rate, the objective couple stress and of the rate of the void ratio, e ̇,
read:

σ
◦

= fs a ̂2ε ̇c + σ ̂: ε ̇c + μ ̂: κ ̄̇ð Þσ ̂+ fd σ ̂+ σ ̂d

 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2̂ ε̇ckk 2 + a2m κ ̄̇kk 2
q� 	

, ð9Þ

μ
◦

= d50fs a2m ̇κ ̄+ σ ̂: ε ̇c + μ ̂: ̇κ ̄+2fd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2̂ εċkk 2 + a2m ̇κ ̄

���� 2
q� �

μ ̂
� 	

, ð10Þ

e ̇= 1+ eð Þε̇c: ε ̇c. ð11Þ

Herein, σ ̂= σ ̸trσ denotes the normalized non-symmetric Cauchy stress tensor,
σd̂ = σ ̂− I ̸3 its deviator, μ ̂= μ ̸ d50trσð Þ the normalized couple stress tensor, εċ the
rate of deformation tensor, and κ ̄̇= d50κ ̇ denotes the normalized rate of the curvature
tensor. Factors fs and fd are functions of the current void ratio e, the pressure
dependent limit void ratios, ei and ed, and the critical void ratio ec [4]. The scalar a ̂
is related to critical stress states, i.e. to the critical friction angle φc, and am is related
to the rotation resistance of particles as outlined in more detail in Huang et al. [7].
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Numerical investigations show that the first two terms in Eqs. (7) and (8) are
only significant when pronounced shear strain localization takes place [1]. As the
focus of the present paper is on investigating the influence of the mean pressure and
the deviatoric stress deviator, the first two terms in Eqs. (7) and (8) are not con-
sidered in the numerical simulations in Sect. 5, i.e. parameters bκ and bω are set to
zero. The values of the constitutive parameters used for numerical simulations are
summarized in Table 1.

5 Numerical Simulation of Biaxial Compression

For numerical simulations with the finite element program ABAQUS the present
micro-polar hypoplastic model is implemented into the version originally developed
by Huang [3]. The specimen with a height of 12 cm and a width of 4 cm is
discretized by 3702 four-node plane strain Cosserat elements with linear shape
functions for displacements and micro-polar rotations. For the initial state a random
distribution of the void ratio and an initial stress of −100 Pa is assumed (Fig. 3a).
In the second loading step the vertical and lateral stress is increased up to −105 Pa.
Then the lateral stress is kept constant and the specimen is vertically compressed.

The results shown in Fig. 3b–d are obtained for a vertical displacement of the
top surface of 1.4 cm. Shear strain localization is clearly visible in Fig. 3b where
the darker area indicates a lower value of the void ratio, i.e. a denser state of the
material. It is also obvious that the initial random distribution of the void ratio
(Fig. 3a) is almost swept out within the localized zone (Fig. 3b). The active shear
band thickness is approximately 12 times of the mean grain diameter. This value is
in a good accordance with the observed thickness during biaxial compression
experiments with dense Karlsruhe sand [8] and the analysis by Mühlhaus and
Vardoulakis [9]. In this context it can be mentioned that the numerical simulations
by Huang and Bauer [7] indicate that the active thickness of the shear band is not a
material constant and may also be influenced on the loading history. As a result of
an increase of the isotropic and deviatoric stress the value of hs decreases form
5800 MPa to an average value of 240 MPa (Fig. 3c). In the zone of intense shear
strain localization, the minimum value is 202 MPa and represented in the contour
plot by the darker area. For d50 a reduction from 0.5 mm to an average value of
0.4 mm is predicted for the entire specimen (Fig. 3d). It is clearly visible that the
reduction of hs and d50 is more pronounced within the localized zone. At the

Table 1 Constitutive parameters used for numerical simulations

hso (Mpa) n d50 (mm) eio edo eco α β φC (°)

5800 0.4 0.5 1.2 0.51 0.82 0.15 1.05 30
am nop b50p n50p bsd (Pa) bod (Pa) b50d b50od bop (Pa)

0.8 −0.31 1.05 0.2 10−5 1.0 10−10 1.0 457
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beginning of shear localization the reduction of this quantities starts in the middle of
the shear band and is therefore not homogeneous along the shear band. This can be
explained by a higher mean pressure in the middle of the deformed specimen. With
a decrease of d50 also the active shear band thickness decreases.

Fig. 3 Contour plot of the
a initial random distribution
of the void ratio e ½1.15, 0.93�;
b–d the void ratio
e ½1.01, 0.73�, stiffness
parameter h*s ½243, 209MPa�,
mean grain diameter d50
½0.41, 0.39mm� for a lateral
stress of − 0.1MPa and a
vertical compression of
1.4 cm
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6 Conclusions

In this paper a new concept is proposed to model the influence of the loading path
on grain damage and compaction behaviour using a micro-polar continuum
description. To this end corresponding evolution equations for modelling the
reduction of the stiffness parameter and the mean grain on the loading history are
introduced and implemented into a micro-polar hypoplastic model. Numerical
simulations of biaxial compression tests show that the effect of grain damage leads
to a significant reduction of the resistance to compaction. With a decrease of the
mean grain diameter the thickness of the zone of shear strain localization is also
reduced.
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Opening of Mode I Fractures
in Geomaterials with Rotating Particles:
Small-Scale Cosserat Continuum
Approach and Its Verification

E. Pasternak, A.V. Dyskin, M. Esin and Y. Xu

Abstract Geomaterials often contain constituents (e.g., grains, blocks) capable of
rotating. Modelling of such geomaterials requires the use of Cosserat continua.
A Cosserat continuum possesses characteristic lengths, which distinguish it from
the scale-independent classical continuum. For geomaterials with grains these
characteristic lengths are of the order of grain size, which restricts the use of
continuum modelling to scales (e.g., crack lengths) macroscopic with respect to the
grain size and to the Cosserat characteristic lengths. This automatically brings us to
the pseudo-Cosserat continuum with constrained microrotations leading to what we
call a small-scale Cosserat continuum. We consider a 2D Mode I crack in such a
continuum and determine its characteristics, in particular the opening. We then
verify this approach using physical modelling and a direct numerical simulation
based on discrete element modelling.

1 Introduction

Geomaterials often consist of cemented grains or slightly cemented and unbounded
constituents (e.g., clay, sand) thus possessing highly nonhomogeneous
microstructure. Furthermore the constituents (particles) can rotate under loading
and thus involve additional, rotational degrees of freedom. This complicates the
modelling of mechanical behaviour of geomaterials especially fracture propagation
therein. In this situation continuum modelling is attractive since it permits skipping
the mechanical and geometric details of the constituents and the binder concen-
trating instead on average behaviour. Such a simplification is especially important
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for fracture modelling as it allows one to neglect the complex interaction between
the stress concentration and the particle movement at the crack tip.

The use of continua for modelling inherently heterogeneous and even discon-
tinuous materials such as geomaterials is based on the hypothesis of separation of
scales (e.g., [1]): if lmicro is the characteristic size of the material microstructure
(e.g., the largest particle dimension) and L is the characteristic length of the vari-
ations of the external fields (e.g., the smallest size of the geometry of the region
modelled or the fracture length or the wave length in dynamic problems), then there
exists an intermediate size H such that lmicro ≪ H ≪ L. Using this size the
continuum can be formed which refers to the fields (e.g., stress, moment stress,
rotation, strain) obtained by averaging the corresponding quantities in the geoma-
terial over volume elements of size H. This continuum will be refereed to as an
equivalent continuum and the volume element of size H is called the representative
volume element (RVE).

While the construction of an equivalent continuum explicitly involves the size of
the representative volume element, the continuum description does not contain
H. This can only occur when the above double inequality is taken to the limit,
which corresponds to retaining only the main term of the double asymptotics

lmicro ̸H → 0, H ̸L → 0 ð1Þ

This is a mathematical representation of the hypothesis of separation of scales.
Geomaterials with constituents (e.g., grains) capable of rotating possess three

rotational degrees of freedom on top of three translational degrees of freedom
characterising conventional materials. Modelling of geomaterials with rotational
degrees of freedom requires the introduction of high order continua, first of all the
micropolar or Cosserat continuum [2–4]. Opposite to the scale independent classical
continua, the Cosserat continuum introduces internal length scales. They emerge
from the difference in units of the elastic moduli relating the stress and strain and the
moduli relating the moment stress and the rotation gradients (curvature-twist). The
units differ by a factor of length squared, which gives rise to a set of characteristic
lengths that can be constructed from the possible pairs of moduli.

Theoretically, the Cosserat characteristic lengths can assume any values. How-
ever, as shown in [5–9] for Cosserat continua constructed to model particulate
materials consisting of spherical particles connected to each other by 3 translational
and 3 rotational springs that the Cosserat lengths are of the order of the particle size.
Therefore, the Cosserat lengths obtained are of the order of lmicro and hence cannot
enter the continuum description, which is the main term of asymptotics (1). Sub-
sequently, due to the separation of scales condition, the model of particulate
material considered in [5–9] corresponds to double asymptotics

lk ̸H → 0, H ̸L → 0 ð2Þ

where lk are the Cosserat characteristic lengths. This asymptotics leads to the
Cosserat continuum with constrained rotations (coupled stress continuum), which
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now becomes a legitimate model of a particulate material rather than a mere sim-
plification of a general Cosserat continuum. In order to emphasise that it is not an
approximation, a term small-scale Cosserat continuum was introduced. Based on
this a model of a crack in a particulate material was developed and a criterion of its
propagation based on the concentration of moments stress was proposed.

In this paper we first prove the asymptotics (2) from general dimensional analysis
and then consider experimental and numerical verification of the model [5–9].

2 Separation of Scales in Cosserat Continuum Modelling
of Geomaterials

Consider a geomaterial with rotating constituents. Let its microstructure be char-
acterised by microscopic lengths λ1, λ2, …; lmicro being their maximum, moduli E1,
E2, … and Poisson’s ratios ν1, ν2, …. Then the dimensional analysis gives that the
Cosserat characteristic lengths lk are

lk = lmicrofk
λ1

lmicro
,

λ2
lmicro

, . . . ,
E1

Emax
,

E2

Emax
, . . . ,

ν1
νmax

,
ν2
νmax

, . . .
� �

ð3Þ

where Emax = max(E1, E2, …); νmax = max(ν1, ν2, …). It is presumed that the
Poisson’s ratios are not negative; otherwise we choose the Poisson’s ratio of
maximum absolute value as νmax. Figure 1 gives an example of two grains bonded
by a cement layer. Here λ1 = lmicro = a, λ2 = lc, λ3 = h.

Now, since fk are constants of the material, the asymptotics (1) leads to
asymptotics (1). Therefore the obtained small-scale Cosserat continuum is a natural
model of a material with microstructure with rotational degrees of freedom as long
as only the main term of asymptotics (1) is retained.

Fig. 1 A fragment of a
particulate material with two
grains bonded by a cement
layer
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3 Wedge Crack in Small-Scale Cosserat Continuum

Consider a crack in two-dimensional isotropic Cosserat continuum in plane (x1, x2).
It has only three degrees of freedom represented by two dimensional displacement
(u1, u2) and rotation φ3. Subsequently the following deformation measures are
introduced: strain and rotation gradients (e.g., [10])

γii =
∂ui
∂xi

, γ12 =
∂u1
∂x2

+φ3, γ21 =
∂u2
∂x1

−φ3, κi3 =
∂φ3

∂xi
, i=1, 2 ð4Þ

The equations of equilibrium and the constitutive law read

∂σji, j
∂xj

=0, i, j=1, 2,
∂μ13
∂x1

+
∂μ23
∂x2

+ σ12 − σ21 = 0 ð5Þ

σ11 = ð2μ+ λÞγ11 + λγ22, σ12 = ðμ+ αÞγ12 + ðμ− αÞγ21
σ21 = ðμ+ αÞγ21 + ðμ− αÞγ12, σ22 = λγ11 + ð2μ+ λÞγ22
μ13 =Bκ13, μ23 =Bκ23

ð6Þ

Here λ and μ are the Lamé constants, α is the Cosserat shear modulus, B is the
modulus relating moment stress and rotation gradient; it has units of Pa/m2.

By substituting (4), (5) into (6) the Lamé equations are obtained

ðλ+2μÞ ∂
2u1
∂x21

+ ∂
2u2

∂x1∂x2

� �
+ ðμ+ αÞ ∂

2u1
∂x22

− ∂
2u2

∂x1∂x2

� �
+2α ∂φ3

∂x2
= 0

ðλ+2μÞ ∂
2u1

∂x1∂x2
+ ∂

2u2
∂x22

� �
+ ðμ+ αÞ ∂

2u2
∂x21

− ∂
2u1

∂x1∂x2

� �
− 2α ∂φ3

∂x1
= 0

l22
∂
2φ3
∂x21

+ ∂
2φ3
∂x22

� �
−φ3 +

1
2

∂u2
∂x1

− ∂u1
∂x2

� �
=0

8>>><
>>>:

ð7Þ

which contain only one length parameter l2
2 = B/(4α).

Asymptotics (2) leads to l2 → 0 and eventually to the following set of equations
constituting the isotropic small-scale Cosserat continuum:

ðλ+2μÞ ∂
2u1
∂x21

+ ∂
2u2

∂x1∂x2

� �
+ μ ∂

2u1
∂x22

− ∂
2u2

∂x1∂x2

� �
=0

ðλ+2μÞ ∂
2u1

∂x1∂x2
+ ∂

2u2
∂x22

� �
+ μ ∂

2u2
∂x21

− ∂
2u1

∂x1∂x2

� �
=0

φ0
3 =

1
2

∂u2
∂x1

− ∂u1
∂x2

� �

8>>><
>>>:

ð8Þ

These equations formally coincide with equations for a 2D isotropic Cosserat
continuum with constrained rotations.

The importance of this feature of the small-scale Cosserat continuum is that the
first two equations are simply the conventional Lamé equations for a classical 2D
elastic plane. Subsequently, if the boundary conditions are classical, that is specified
in terms of displacements or tractions then the displacement field can be determined
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in a usual way without involving the rotational degree of freedom. After that, the
field of rotations can be found using the third equation of (8) and from it the
moment stress field can be calculated, using the constitutive Eq. (6).

A comment should be made here. According to (2) the asymptotics considered
corresponds to l2 ̸H→ 0, where H is the characteristic length of redistribution of
stress/strain fields. In other words, H is the scale of the modelling. Subsequently,
the asymptotics of small-scale Cosserat continuum can be implemented by H → ∞,
rather than l2 → 0. Therefore, modulus B ∼ l2

2 is not small and hence the moment
stresses associated with (constrained) rotations can be large and capable of inducing
local failure.

The above consideration explains the following algorithm for solving the
problem of a wedge crack in a small-scale Cosserat continuum (see [8] for detail):
(i) solve the problem for a conventional wedge crack in isotropic elastic plane;
(ii) determine the rotation and moment stress fields using (6), (8).

Implementing this algorithm we start with a semi-infinite crack in an infinite
plane opened by a thin rigid rectangular wedge with thickness of 2h at a distance
b from the crack tip, Fig. 2. Due to the symmetry, only the upper half plane y > 0 is
considered (here we use x and y instead of x1 and x2).

For the plane stress problem (for the plane strain problem E should be replaced
with E/(1 − ν2) and ν with ν/(1 − ν)) the displacement field (u, v) is [11]:

2Gu= ð1− 2νÞReZ − yImZ
2Gv=2ð1− νÞImZ − yReZ

,
�

φ=
1
2

∂v
∂x

−
∂u
∂y

� �
ð9Þ

where Z is the Westergaard complex stress function, which for this crack is:

ZðzÞ= Eh
π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðz+ bÞp , z= x+ iy, Z =

d
dz

Z, ZðzÞ= Eh
π
sinh− 1

ffiffiffi
z
b

r
ð10Þ

Figure 3 shows the displacement and rotation fields for the upper half plane,
y > 0 for b = 62 mm, 2h = 10.8 mm, ν = 0.3. As can be seen there is singularity
in the rotation field at the crack tip (x = 0, y = 0) and at the point of the wedge
(x = −b). For the purpose of model verification the paper focuses only on the
rotations.

Fig. 2 Wedge crack
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4 Wedge Crack: Physical and Discrete Element Models

Experimental verification of the proposed small-scale Cosserat continuum approach
will be based on a 2D physical model of particulate material [12]. The model
consists of an assembly of steel discs placed between two plexiglass walls. The
assembly was restricted from the left and right sides by aluminium plates positioned
between the walls. The disc rotations were measured using digital image correla-
tion. To this end the discs were covered with speckles. The images taken by Canon
5D Mark II with Sigma 70 mm macro lens were processed in VIC-2D software to

Fig. 3 Displacement (u,
v) and rotation φ fields created
by the crack
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determine the disc rotations. A proprietary algorithm was developed which aver-
ages the obtained rotations exported from VIC-2D within each area of interest.

In the experiment reported a square packing of disks was used, Fig. 4. The
reason for this choice of assembly geometry was dictated by the presence of straight
boundary between the discs such that the crack was easy to model simply by
removing the bonds between the particles. The technically simplest loading was
performed through a lateral wedge of the angle 5°, Fig. 4.

5 Discrete Element Model

The Itasca Particle Flow Code2D (PFC2D) realising the discrete element method
(DEM) was used alongside the physical model. The linear parallel bond (PB) rep-
resented the silicone sealant between the discs, while the linear contact model
simulated the behaviour of the un-glued pairs of discs. Some parameters of the
model were taken from a previous study, namely the normal and shear stiffnesses of
wall-to-disc and disc-to-disc contact, critical shear and normal damping ratio,
friction coefficient of wall-to-disc and disc-to-disc contact [12]. The newly included
micro-properties—normal and shear stiffnesses of PB model were estimated using
the sealant’s mechanical properties and the geometry of gluing area as
kn̄ =E ̸L=0.08MPa ̸mm, ks̄ =E ̸ 2ð1+ νÞLð Þ=0.03MPa ̸mm, where E is the
Young’s modulus of the silicone sealant, L is a length of the bond, ν=0.3 is the
Poisson’s ratio. Since fracture propagation is not considered, the parallel bond
tensile and shear strength are set to large values of 10 GPa. Since in the experiment
powdered graphite was used as a lubricant, the friction coefficient between the
wedge and the discs was set to a small value of 0.01.

The PFC solution scheme is based on the explicit finite-difference method,
which requires specifying the time step. We used the time step of 0.0005 s;
reducing the time step did not change the results.

Fig. 4 The fracture (cut
bonds between three pairs of
the discs) opened by a wedge
covering three discs
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Figure 5 shows the comparison of disc rotations in the assembly during the
physical experiment (Fig. 5a), DEM model (Fig. 5b) and the analytical model
(Eqs. (9), (10)) at the stage when the wedge reaches the third pair of the discs
(Fig. 5c). The numbers in each disc show the rotation (in degrees). Negative values
denote the clockwise direction. Rotations in both directions smaller than the
measurement error of 0.3° are not shown. As the wedge thickness is relatively
small, the discs above the wedge rotate slightly (maximum magnitude is 3.8° in
Fig. 5a, b and 4.1 in Fig. 5c), the discs near the right wall (slider) practically do not
rotate.

During movement the wedge hardly contacts the discs along the upper fracture
surface (except of the disc at the left boundary of the assembly). This shows that the
opening of the Mode I fracture is determined by the wedge thickness at the left edge
of the physical model, which justifies the use of straight wedge in analytical cal-
culations. Furthermore, despite very approximate nature of the analytical model it
gives acceptable results near the crack surfaces, which is the area where the
knowledge of rotations is most important as the rotation-induced moment stresses
cause failure and the resulting fracture pattern (see [9, 13] for details).

6 Conclusions

2D physical experiment and discrete element modelling (DEM) of mechanical
behaviour of an idealised slightly cemented granular material with a pre-existing
fracture features particle rotations associated with the fracture opening. Subse-
quently, the homogenisation of the particulate material should involve the Cosserat
theory to account for the rotational degree of freedom. The obtained Cosserat

Fig. 5 Comparison between rotations calculated/measured in different models: a physical model;
b DEM model and c analytically calculated. The number inside each disc indicates the angle of
rotation in degrees (negative angles mean clockwise rotation). The dash-lined rectangle indicates a
zone where analytical solution and experimental and numerical results are in reasonable agreement
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continuum has the Cosserat lengths commensurate with the particle size and hence
become infinitesimal in the continuum. This corresponds to the asymptotics of
small Cosserat lengths; the main asymptotic term (Small-scale Cosserat continuum)
is given by the standard equations of elasticity with the rotational field obtained
from the displacement field and the moment stresses determined from the rotation
gradients using the Cosserat constitutive equations. In particular, the rotations
caused by opening of a fracture obtained using this approach show adequate cor-
respondence to both experimentally measured and DEM calculated rotations.
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Strain Localization with Rate Dependent
Models Versus Cosserat Continuum:
An Illustrative Example

Ioannis Stefanou and Jean Sulem

Abstract A simple example of adiabatic shearing of a rock layer under constant
shear stress is considered in order to investigate and juxtapose two different
modeling frameworks concerning strain localization and shear band thickness. The
first framework is the Cauchy continuum with a rate dependent constitutive law
(viscoplasticity). The second modeling framework is Cosserat elastoplasticity.
Cosserat continuum is a special case of higher order continua. It is shown that the
conditions for shear band triggering have a similar mathematical form, even though
the starting point is different from a physical point of view.

1 Introduction

The simple example of adiabatic shearing of a rock layer under constant shear stress
and in inelasticity is considered in this chapter. The purpose of this example is to
investigate and juxtapose two different modeling frameworks of at least, at first
approximation, different physics, and compare the conditions for which shear band
localization takes place in each case.

The first framework is the Cauchy continuum with rate-dependent constitutive
law (viscoplasticity). Rate dependent constitutive and in general visco-plastic
constitutive laws in the frame of Cauchy continuum are frequently used in the
literature as they lead to finite thickness shear band formation. The relation between
viscosity and shear band thickness (and consequently material length scale) has
been discussed in several publications (e.g. [1]).

The second modeling framework is Cosserat elastoplasticity. Cosserat contin-
uum is a special case of higher order continua, which are also called generalized
continua (for a classification of the most common higher order continua we refer to
[2]). Cauchy continuum is a special case of the Cosserat continuum, if one neglects
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the additional rotational degrees of freedom that the latter has and their conjugate in
energy generalized stresses.

Thermal softening is taken into account as a destabilizing mechanism that may
lead to shear band localization. The complexity of the chosen constitutive laws and
of the multiphysical couplings considered is kept to a minimum degree in order to
reveal the salient futures of each framework and highlight their similarities and their
differences as far as strain localization is concerned. For a more detailed modeling
in the frame of Cosserat continuum involving thermo-poro-chemo-mechanical
couplings and more elaborate constitutive laws for the rock material, the reader is
referred to [3–7]. The reader is referred to [8] for the Cauchy rate dependent
framework under thermo-poro-chemo-mechanical couplings.

The thickness of the rock layer considered is D and constant normal and shear
stresses are applied at its boundaries as depicted in Fig. 1. Initially, the layer is
considered to be in a state of homogeneous shear deformation.

In both models it is assumed that all the plastic work is converted to heat and that
Fourier’s law is applicable. Under these assumptions, the heat equation is written in
indicial notation as follows:

∂T
∂t

= cth
∂
2T
∂x22

+
1
ρC

σijγ ̇pij +
1
ρC

mijκ ̇pij ð1Þ

where, T is the temperature inside the layer (the flux is denoted as qh), cth is the
thermal diffusivity, ρC the specific heat, σij, γ

p
ij are respectively the non-symmetric

stress and plastic deformation rate tensors and mij, κij the couple stress and plastic
curvature rate tensors respectively. A common assumption is to consider that the
layer is invariant in the x1 and x3 directions (infinite layer hypothesis). Conse-
quently the derivatives in these directions vanish. Repeated indices indicate sum-
mation and i, j=1, 2, 3. ð.Þ, i denotes derivation in the ith direction, i.e. ð.Þ, i = ∂

∂xi
ð.Þ,

Fig. 1 Shearing of a rock
layer: Cosserat rotational
degree of freedom ω and
couple stresses
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and ð.Þ
⋅
is the time derivative. Small deformations are considered and the slip event

is sufficiently rapid in order to justify adiabatic conditions at the boundaries of the
layer.

2 Cauchy Continuum with Rate Dependent
Constitutive Law

Let’s assume a simple rate dependent constitutive law for the shear stress at a point
inside the shear layer:

σ12 = τ0 +Hγ1̇2 + ξ T − Tsð Þ ð2Þ

where H is a mechanical hardening parameter (positive), ξ a thermal softening
parameter (negative), Ts a reference temperature and τ0 the shear stress at steady
state and reference temperature.

For a Cauchy continuum the linear momentum balance is:

σij, j =0 ð3Þ

Inertia terms and body forces are neglected in this example. The angular
momentum balance imposes the symmetry of the stress tensor, σij = σji. For a
Cauchy continuum, γij = ui, j, where ui is the displacement in the ith direction.

At steady state T =T* = Ts, σ12 = σ*12 = τ0, σ22 = σ*22 = σ0, γ1̇2 = γ*̇12 = 0 and

T
*̇ = 0. This state will be stable as long as any perturbation does not grow in time.

By perturbing the temperature and displacements fields at steady state, T = T* +T ̃,
ui = u*i + uĩ) and by neglecting higher order terms, Eqs. (1), (2) and (3) become:

σ ̃12 =H γ ̃ṗ12 + ξT ̃;
∂σ ̃12
∂x2

= 0;
∂σ ̃22
∂x2

= 0

∂T ̃
∂t

= cth
∂
2T ̃

∂x22
+

1
ρC

σ*12γ ̃
ṗ
12

ð4Þ

The perturbations T ̃, uĩ should fulfill the boundary conditions of the rock layer.

Equation (4) together with the boundary conditions ∂T ̃
∂z

���
z=±D

2

= 0, σ1̃2 z=± D
2

� �
=0

and σ2̃2 z=± D
2

� �
=0 form a linear system of partial differential equations which

admits solutions of the type uĩ =Uiestsin 2π
λ z, T ̃= Test cos 2πλ z, where s is the

so-called growth coefficient and λ= D
N, N =1, 2, 3, . . . Replacing the perturbations

into (4) we obtain: s= − ξτ0
HρC − 4π2cth

λ2
. The system is unstable when s >0 or,
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equivalently, when the wavelength of the perturbation is bigger than a critical

wavelength λrdcr : λ > λrdcr =2π
ffiffiffiffiffiffiffiffiffiffi
HcthρC
− ξτ0

q
.

3 Cosserat Elastoplasticity

Compared to the classical Cauchy continuum, Cosserat continuum is equipped with
additional degrees of freedom, i.e. the Cosserat rotations. The rotational degrees of
freedom are conjugate in energy with moments, the so-called couple stresses. For a
Cosserat continuum, the angular momentum balance leads to the additional equa-
tion for the couple stresses:

mij, j + εijkσkj =0 ð5Þ

Body forces and moments as well as inertia and micro-inertia terms are also
neglected in this paragraph. It is worth mentioning that due to the presence of the
couple stresses the stress tensor is not symmetric, i.e. σij ≠ σji. εijk is the Levi-Civita
symbol. The generalized strains of the Cosserat continuum are γij = ui, j + εijkωc

k and
the curvatures are κij =ωi, j. An elastic perfectly plastic constitutive behavior with
thermal softening is assumed in this example. More advanced Cosserat constitutive
models such as the Mühlhaus-Vardoulakis Cosserat plasticity model [9] might be
used, but the advantage of this simple model is that analytical derivations can be
performed, which permits a convenient comparison with the above rate dependent
model. By analogy with the Cauchy rate dependent model presented in the previous
paragraph, the yield surface is defined as:

F = σð12Þ − τ0 − ξ T −Tsð Þ ≤ 0 ð6Þ

where σðijÞ denotes the symmetric part of the stress tensor. In this way the same
shear stress limit and thermal softening with the Cauchy model is retrieved if one
neglects the rate dependent term in Eq. (2). The strains and curvatures of the
Cosserat medium are split in elastic and plastic parts γij = γelij + γplij , κij = κelij + κplij as
usual. Nevertheless, because of the chosen yield surface (Eq. (6)) the plastic cur-
vatures are zero and therefore they do not contribute to the heat equation (Eq. (1)).
In a centrosymmetric, linear elastic isotropic Cosserat medium, the stresses are
related to the generalized elastic deformation measures according to the following
constitutive relations [10]:

σij =Kγelkkδij +2G γelðijÞ −
1
3
γelkkδij

� �
+2η1Gγ

el
½ij�

mij =4GR2 κelðijÞ + η2δijκ
el
kk

� 	
+4GR2η3κ

el
½ij�

ð7Þ
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where K is the bulk modulus, G is the shear modulus, η1, η2, η3 are positive material
constants and R is an internal length parameter, which here is identified to the mean
radius of the grains of the Representative Volume Element (RVE). γðijÞ and γ½ij�
denote respectively the symmetric and anti-symmetric part of γij. The Cosserat
shear modulus, which expresses the stiffness related to the relative rotation of the
particle (e.g. of a grain) with respect to the macro-rotation of the continuum (e.g.
assemblage of grains) is defined as Gc = η1G.

At steady state we have a Cauchy continuum under homogeneous shear. In

particular, T *̇ = 0, T = T* = Ts, σð12Þ = σ*ð12Þ = τ0, σ½12� = σ*½12� =0, m32 =m*
32 = 0 and

σ22 = σ*22 = σ0. This state will be stable as long as any perturbation does not grow in
time. The temperature, the displacement and the rotation fields at steady state are
perturbed (T =T* +T ̃, ui = u*i + uĩ, ωc

3 =ωc*
3 +ωc̃

3) as in the Cauchy case. The
perturbations T ̃, uĩ and ωc̃

3 have to fulfill the boundary conditions of the rock layer
as in the Cauchy continuum case and additionally m̃32 z=± D

2

� �
=0. A linear system

is then formed which admits solutions of the form:uĩ =Uiest sin 2π
λ z,

ωc̃
3 =Ω3est cos 2πλ z, T ̃= Test cos 2πλ z. The critical growth coefficient is then:

s= − 16Gπ4R2ρCcth
λ2 4Gπ2R2ρC+ 8π2R2 + λ2ð Þξτ0ð Þ where we set Gc =G for simplicity. The system is

unstable when s>0 or, equivalently when the wavelength of the perturbation is

bigger than a critical wavelength λCoscr : λ> λCoscr =2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 GρC +2ξτ0ð Þ

− ξτ0

q
≈ 2π

ffiffiffiffiffiffiffiffiffiffi
R2GρC
− ξτ0

q
. The

Lyapunov exponent is singular for λCoscr . This is a mathematical artifact due to the
absence of inertia and micro-inertia (see [3] for more details). However, here we
focus on the onset of the instability. For typical values of the shear modulus, the
applied shear stress at the boundary, the thermal softening parameter and specific
heat, it holds GρC ≫ ξτ0.

4 Conclusions

Even though both frameworks are based on different constitutive assumptions and
micro-mechanisms, the resemblance of the expressions for the critical wavelength
impels an analogy between the hardening parameter of the viscoplastic model
H and the Cosserat internal length, which here is chosen equal to the mean grain
radius: Hcth ∼ R2G. The hardening parameter H can be measured experimentally
for a given rock and it generally decreases during shearing together with the size of
the grains and the shear modulus, which also decrease due to important shearing
and comminution. It is worth mentioning that the term R2G represents the rolling
stiffness of the grains, which, in comparison with the classical Cauchy continuum,
rigidifies the system in the same way that the viscous term in the rate dependent
friction law does. If we take the example of a highly granulated fault gouge with a
grain size of 10 μm and assuming a shear modulus G = 300 MPa, then for
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cth =1mm2 ̸s, the hardening parameter H is equal to H =0.03MPa s, which is in
agreement with experimental measurements [11, 12]. Consistently, we observe the
similar role of the diffusion length and of the Cosserat internal length in the control
of the thickness of the localization zone.
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A Breakage Diffusion Model for Strength
Softening Rock

Hans Muhlhaus and Lutz Gross

Abstract A generalised version of the gradient plasticity model by Muhlhaus and

Aifantis [4] is proposed. As an example, simple shear with a weak zone of reduced

cohesive strength around the center of the shear layer is considered. Details of the

formulation, implementation and numerical and analytic results are presented. The

results include unexpected elements, which are interpreted in terms of a partial (ana-

lytic) solution of the governing equations.

1 Introduction

The need for strain gradient theories of plasticity arises mainly in the context of strain

softening materials [1] where the gradient terms provide an internal length scale

avoiding mesh dependency of the numerical solution beyond the usual discretisation

error. In geotechnical engineering, specifically in connection with mining applica-

tions, the ability of computational models to realistically capture strain/strength soft-

ening in numerical simulations is of crucial importance for usefulness of numerical

simulations.

2 A Strength Softening Model

Our main aim is the development of a set of equations that describe inelastic behav-

ior of brittle rock including the decrease of cohesive strength after a critical stress

level is reached as defined by a yield criterion. For our formulation we choose the

simplest model applicable, a Drucker–Prager type yield criterion in combination
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with a non-associated Prandtl–Reuss flow rule. The following notations apply: The

components of the stress tensor are designated as 𝜎ij, the deviatoric stress reads

𝜎

′

ij = 𝜎ij + p𝛿ij, where p = −1
3
𝜎kk = −1

3
(𝜎11 + 𝜎22 + 𝜎33) is the pressure. With 𝜏 =√

1
2
𝜎

′

ij𝜎
′

ij the Drucker-Prager yield criterion is written as

F = 𝜏 − 𝛼p − 𝜏Y ≤ 0 (1)

with friction parameter 𝛼 and cohesive strength 𝜏Y . With the above assumptions, the

constitutive relationships for the stretching Dij are obtained as

�̇�ij = 2G Dij + (K − 2
3
)Dkk𝛿ij − �̇� (G

𝜎

′

ij

𝜏

+ 𝛽 K𝛿ij) (2)

where �̇� is the equivalent plastic strain rate, 𝛽 is the dilatancy function, and G and

K are the shear and bulk moduli, respectively. We also have to obey the secondary

conditions �̇� ≥ 0 and F ⋅ �̇� = 0. The cohesive strength 𝜏Y is a function of the plastic

strain 𝛾 in the form

𝜏Y = g(𝛾) (3)

where g is the strain hardening/softening function. For the simple bi-linear model

this takes the form

𝜏Y = g(𝛾) = max(g0 − h ⋅ 𝛾, gres) (4)

where g0 is the initial strength, gres is the final strength and h is the

hardening/softening modulus. It is well known that softening (i.e. h > 0) leads to

localization and because of the absence of an internal length scale strong mesh sen-

sitivity of the solution of the discretized equations follows. To regularize the situation

we modify relationship (4) and thus the yield criterion (1) by adding a non-local, flux

term [4]

𝜏Y = g(𝛾) + qj,j with flux qj = −𝜅𝛾
,j (5)

where 𝜅 is a positive constant. In (3) and (5) the strain considers the contribution

of the inelastic deformation mechanisms within the representative volume element

(RVE) while the non-local term, i.e. flux qj, considers the interactions of the mech-

anisms between neighboring RVEs. One can write 𝜅 = G ⋅ l2 where parameter l is

interpreted as the characteristic length scale of the inelastic mechanisms, e.g. when

crack spacing is treated as a material parameter. The negative sign of the plastic

strain gradient term in (5) guarantees that the non-local term always stabilizes the

deformation, independent of the sign of the derivative.
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3 Numerical Scheme

We use a simple, tangential integration time scheme with time step size dt > 0. The

current stress is set to 𝜎ij = 𝜎
−
ij + 𝛥𝜎ij where the stress increment 𝛥𝜎ij = dt ⋅ �̇�ij is

obtained from Eq. (2) as

𝛥𝜎ij = 2G 𝛥𝜀ij + (K − 2
3
G)𝛥𝜀kk𝛿ij − 𝛥𝛾 (G

𝜎

′−
ij

𝜏
− + 𝛽 K𝛿ij) (6)

where 𝛥𝛾 = 𝛥t ⋅ �̇� and 𝛥𝜀ij = 𝛥t ⋅ Dij are the plastic strain and the strain tensor incre-

ments. The stress increment needs to fullfill conservation of momentum

− (𝜎−
ij + 𝛥𝜎ij)j = 0 (7)

which defines a system of partial differential equation for the displacement increment

𝛥ui and the plastic strain 𝛥𝛾 . To complete the system we need an additional equation

which is derived from the yield condition (1). First we observe that

p = p− − KDkk + 𝛽K𝛥𝛾 and 𝜏 = 𝜏
− + G

𝜏
− 𝜎

′−
ij 𝛥𝜀ij − G𝛥𝛾 . (8)

Under the assumption that the yield condition is met in the current time step we

obtain from identities (8):

𝛥𝜏Y = 𝜏Y − 𝜏
−
Y = F− + G

𝜏
− 𝜎

′−
ij 𝛥𝜀ij + 𝛼K𝛥𝜀kk − (G + 𝛼𝛽K)𝛥𝛾 . (9)

On the other hand the incremental form of the modified model for the cohesive

strength (5) is given in the form

𝛥𝜏Y = h−T 𝛥𝛾 − (𝜅 𝛥𝛾
,j),j (10)

with tangential softening modulus h−T = g′(𝛾−). Combining Eqs. (9) and (10) leads

to

(h−T + G + 𝛼𝛽K) 𝛥𝛾 − (𝜒𝜅 𝛥𝛾
,j),j − 𝜒( G

𝜏
− 𝜎

′−
ij 𝛥𝜀ij + 𝛼K𝛥𝜀kk) = 𝜒F−

(11)

where the function 𝜒 marks regions in the domain in which the yield condition F = 0
is reached. We use

𝜒 =
{

0 if ̂F < 0
1 otherwise

(12)
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with ̂F providing a predictor for the yield condition:

̂F = 𝜏 − 𝛼p − 𝜏
−
Y = F− + G

𝜏
− 𝜎

′−
ij Dij + 𝛼KDkk . (13)

Notice that Eq. (11) implies 𝛥𝛾 = 0 in the elastic region where F < 0 which in par-

ticular enforces 𝛥𝛾 to be zero on the boundary of the plastic region F = 0 if this

boundary is not an external boundary. Starting from 𝜒 = 0 the coupled system of

PDEs (7) and (11) is solved iteratively in each time step where 𝜒 is updated accord-

ing to (12) and (13). Convergence is detected when changes in the displacement and

plastic strain increments are small which is typically reached after three steps. Then

the cohesive strength is updated using identity (9) which in comparison to Eq. (10)

provides the advantage that no second order derivatives need to be evaluated. It is

pointed out that in the absence of the diffusion term in Eq. (11) (i.e. 𝜅 = 0) the plastic

strain increment 𝛥𝛾 can be eliminated from the momentum Eq. (7) [3]. For this case

no boundary conditions for regions in the plastic state are enforced on the 𝛥𝛾 and as

a consequence – in contrast to the case 𝜅 > 0 – 𝛥𝛾 can become discontinuous at the

boundaries between elastic and plastic regions.

The solution scheme has been implemented in python using the finite element

solver esys-escript, see [2, 5].

4 Simple Shear

We consider a simple shear parallel to the horizontal x = x1 axis. All fields depend

on the vertical z = x2 coordinate only. We define H as thickness of the layer (−H
2
≤

z ≤ H
2

). We assume that the horizontal displacement is kept at zero at the bottom of

the domain z = −H
2

and is slowly increased at a constant velocity v1 at the top of

the domain z = H
2

over time. No external pressure is applied and it is set 𝛼 = 𝛽 = 0.

We also assume incompressibility which makes the shear components 𝜀12 and 𝜎12
the only non-zero entries in the strain and stress tensor, respectively. To meet the

momentum equation 𝜎12 = 𝜏 needs to be constant. A weak zone is introduced by

reducing the initial cohesive strength g0 over a zone of thickness P at the center of

the domain (−P
2
≤ z ≤ P

2
). In this zone it is �̇� = �̇�Y = �̇�12 and hence we can derive

from Eq. (5)

�̇�12 = −h �̇� − 𝜅�̇�
,zz (14)

In addition the boundary conditions �̇�(P
2
) = �̇�(−P

2
) = 0 need to be fulfilled if P < H.

The solution is given as

�̇� =
�̇�12
h

(
cos(𝜆z)
cos(𝜆P

2
)
− 1

)
with 𝜆 =

√
h
𝜅

(15)
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(a) Stress-Strain (b) Cohesive strength

Fig. 1 External strain 𝜀
app
12 versus stress 𝜎12, which is constant across the domain. The straight line

shows the elastic stress-strain relation. Part b shows the cohesive strength 𝜏y as function of depth z
for selected values of 𝜀

app
12

for −P
2
≤ z ≤ P

2
. The term within the brackets remains non-negative if

𝜆

P
2
<

𝜋

2
or

P2 h
𝜋
2 < 𝜅 . (16)

As �̇� ≥ 0 �̇�12 must be positive. It can be shown that under condition (16) such a

�̇�12 does in fact exist but can otherwise not be guaranteed (details are left out here).

Note that here the internal length through the diffusion term controls the shape of

the plastic strain within the weak zone but does control its width P.

Figure 1a shows the accumulated shear stress 𝜎12 versus the applied total shear

strain 𝜀
app
12 = v1⋅t

H
. We use H = 10, G = 1, h = 0.3, 𝜅 = 1, P = 3 and a displacement

increment of 0.02 at the top boundary z = H
2

. The initial strength g0 is set to 0.5G
within the weak zone and to G elsewhere. The history of the cohesive strength 𝜏Y
is presented in Fig. 1b showing an initially increasing 𝜏Y in the weak zone until a

constant value across the domain is reached at 𝜀
app
12 ≈ 0.52. At this point the entire

domain enters the plastic state, see Fig. 1a. Initially the plastic strain 𝛾 is accumulat-

ing in the weak zone only but is increasing through out the domain once global soft-

ening has kicked, see Fig. 2a, b. The corresponding behavior is observed for the shear

strain 𝜀12 as shown in Fig. 3a, b. After global softening has started 𝜀12 is increasing

at a constant rate across the domain where the rate equals the externally applied

shear strain rate. Initially 𝜀12 is increasing faster within the weak zone resulting in a

reduction of the shear strain rate in the elastic zone. At the same time the shear stress

𝜎12 is increasing in accordance to (15) but diverts from the initial elastic change, see

Fig. 1a. At the point global plasticity is kicking in shear stress starts to decrease. This

is consistent with Eq. (14) which in this situation simplifies to �̇�12 = −h�̇� ≤ 0.
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(a) Accumulated plastic strain (b) Incremental plastic strain

Fig. 2 Accumulated and incremental plastic strain as function of z for selected values of 𝜀
app
12

(a) Accumulated shear strain (b) Incremental shear strain

Fig. 3 Accumulated and incremental shear strain as function of z for selected values of 𝜀
app
12

5 Conclusions

The solution of problems involving strain softening are non-unique in general. We

have presented a solution of a simple shear problem which differs in some aspects

from what has been presented in the literature. The differences are owed mainly to

a specific choice of the strength parameters and the magnitude of the coefficient of

the gradient hardening term. The solution is of interest, we believe, in its own right

but also as a benchmark problem for finite element implementations.
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Numerical Simulations of Debris Flows
and Its Application in Hazard Assessments

K.T. Chau

Abstract As over seventy percent of the land of Hong Kong is mountainous,
rainfall-induced debris flows are not uncommon in Hong Kong. The objective of
this study is to incorporate numerical simulations of debris flows with GIS to
identify potential debris flow hazard areas. To illustrate this approach, the proposed
methodology is applied to Tsing Shan and Leung King Estate in Tuen Mun, Hong
Kong. A three-dimensional Digital Elevation Model (DEM) of the terrain and the
potential debris-flow sources were generated by using GIS to provide the required
terrain and flow source data for the numerical simulations. A theoretical model by
Takahashi et al. [9] improved by incorporating a new erosion initiation criterion
was used for simulating the runout distances of debris flows. The well-documented
1990 Tsing Shan debris flow, was used to calibrate most of the flow parameters
needed for computer simulations. Based on the simulation results, a potential
hazard zone was identified and presented by using GIS. Our proposed hazard map
was thus determined by flow dynamics and a deposition mechanism through
computer simulations without using any so-called expert opinions.

1 Introduction

Over seventy percent of the 1100 km2 of land in Hong Kong is hilly, and usable flat
land is very scarce. Reclamation within the Victoria Harbor has been banned in
recent years. The population of Hong Kong increased from 2.2 million in 1953 to
7.3 million in 2016. Natural hillsides have been transformed into residential and
commercial. The risk of debris flow, rockfall and landslides in Hong Kong has been
increasing tremendously because the rapid development of rural areas next to steep
terrain [1, 4–7].

K.T. Chau (✉)
Department of Civil and Environmental Engineering, The Hong Kong Polytechnic
University, King’s Park, Hong Kong
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The main objective of this paper is to summarize the numerical model proposed
by Chau and Lo [2] and to provide some new results. Although there has been some
criticism on such approach, we believe that theory based numerical simulation is
superior to empirical approach in hazard estimation (e.g. [3]). Ideally, a reliable
debris flow hazard map should carry “appropriate” weights from historical landslide
events, from geomorphological analysis, and from mechanical or dynamical anal-
ysis of slides, falls, and flows of the earth mass. Since all three aspects of hazard
analysis involve a large amount of factual, geological and simulated data, the use of
computer or information technology is crucial to the success of such analysis. The
present study uses the geographical information systems (or GIS) to incorporate the
dynamics of debris flow.

2 Debris Flow Model

In the literature, there is no theoretical flow model that can simulate debris flow
over a three-dimensional terrain, that at the same time takes into consideration of
bed erosion and deposition. The only available models that can simulate
three-dimensional debris flow approximately are the two-dimensional depth aver-
age models (e.g. [9]). Most of the existing models did not incorporate erosion and
deposition mechanism; only the models by Takahashi et al. [9] and Ghilardi et al.
[8] incorporated the possibility of erosion and deposition. In this study, we have
adopted the model proposed by Takahashi et al. because it has been available for us
to use (private communication, Takahashi and Nakagawa). Without going into the
details, we should emphasize a major limitation of the model by Takahashi et al.
[9]. That is, the critical slope gradient for the onset of erosion is assumed constant in
the model. This is only an approximation since the critical gradient would naturally
depend on the streampower of the flow.

In the Takahashi et al. [9] model, the mixture is assumed to consist of three
components, water, fine solid particles, and coarse solid particles. The content of
solids is represented by volumetric concentrations of solid particles in the mixture
(csp), of coarse solid particles in the mixture (Ccp), of fine solid particles in mixture
(cfp), and of fine solid particles in interstitial fluid (cif ). They are defined as:

csp =
Vs

VT
, ccp =

Vc

VT
, cfp =

Vf

VT
, cif =

Vf

Vi
ð1Þ

The flows of the fine and coarse particles through a small control volume satisfy
the following continuity equations [9],

∂ccp
∂t

+
∂ccpM
∂x

+
∂ccpN
∂y

= ic*cp,
∂cfp
∂t

+
∂cfpM
∂x

+
∂cfpN
∂y

= ic*fp ð2Þ
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where M and N are the average fluxes over flow depth h along the x- and y-
directions respectively. The velocity of gain or loss of the solid particles is denoted
by i. The “*” denotes the eroded or deposited debris mixture at the bed, what all the
mixture concentrations on the left hand side must be given. The momentum
equations of the debris mixtures flowing along the x- and y-directions are respec-
tively [9]:

∂M
∂t

+ β
∂u0M
∂x

+ β
∂v0M
∂y

= gh sin θbx − gh cos θbx
∂ðzb + hÞ

∂x
−

τbx
ρT

ð3Þ

∂N
∂t

+ β
∂u0N
∂x

+ β
∂v0N
∂y

= gh sin θby − gh cos θby
∂ðzb + hÞ

∂y
−

τby
ρT

ð4Þ

where g is the gravitational constant (9.81 m/s2); zb is the deposit thickness; uo and
vo are the velocities along x- and y-directions respectively; β is a momentum
correction factor; ρT is the equivalent density of the debris mixture; θbx and θby are
the tangents at the bed along the x- and y-directions respectively; and τbx and τby are
the base shear resistances along the x- and y-directions respectively.

A new erosion initiation criterion is expressed in terms of the minimum energy
gradient, than θmin (i.e. a natural slope with energy gradient θ less than θmin will
suffer no erosion) [2]:

θmin = sin− 1
cspGsρw

R 1
Pf
ωrdP

� �
̸ð1−Pf Þ

Fρm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u20 + v20

p
σ − 2ρm
σ − ρm

� �
8
<

:

9
=

;
ð5Þ

where csp,F,Gs, σ, ρw,Pf ,P, u0, v0, ρm and ωr are solid concentration in the flow,
excess fraction of the streampower available for erosion (typically 0.1–0.2), specific
gravity of the solid particles, density of the solid particles, density of water, per-
centage of fine solid (i.e. particle size less than 63 μm), percentage of solid mass in
the fluid with a certain particle size d, average flow velocity along the x-direction,
average flow velocity along y-direction, density of the muddy water (i.e. the
interstitial fluid), and relative settling velocity of particle of size d respectively. The
deposition velocity can be calculated from [2]:

i=K
ffiffiffiffiffi
gh

p
sin3 ̸2 θ 1−

σ − ρi
ρi

ccp
tan α
tan θ

− 1
� �� �1 ̸2 tan α

tan θ
− 1

� �
ðccα − ccpÞ hd ð6Þ

where K, g, σ, ρi, h, d, α and ccα are a numerical constant (typically 0.06), the
gravitational constant, the density of the interstitial fluid, the density of the debris
material, the flow depth, the mean diameter of solid particles, the dynamic frictional
angle, and the equilibrium solid concentration. Equation (6) is obtained by
assuming that erosion is caused by the dynamic action of the shear stress on the bed
by the interstitial fluid of the overlying sediment-laden flow. This erosion process is
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assumed to continue as long as the entrained-solids is less than the equilibrium
value ccα. As shown in Eq. (6) that when ccp increases to ccα, the erosion velocity i
diminishes to zero.

3 Numerical Simulation for Debris Flow in Hong Kong

To calibrate the parameters of the present numerical model, back analysis will be
conducted for the 1990 Tsing Shan debris flow event. The 1990 Tsing Shan debris
flow occurred on the eastern flank of Tsing Shan on 11 September 1990 and is the
largest debris flow in the recorded history of Hong Kong (see Fig. 1). It was
estimated that a total of 19 000 m3 of debris deposited down slope. The total travel
distance is about 1 km. Although this event is relatively well-documented, similar
to most other debris flows reported elsewhere no discharge histrograph was mea-
sured. We adopt the discharge histrograph recorded at Mount. St. Helens and scale
it down match to the total volume of debris reported for the 1990 Tsing Shan debris
flow. Regarding the solid (both fine and coarse) concentrations in the discharge, we
use the solid concentrations adopted for the Horadani debris flow simulation (pri-
vate communication, Takahashi and Nakagawa). The results of the simulation are
shown in Figs. 1 and 2. Figure 1 shows the 3-D simulation result together with an
aerial photo of the same slope at Tsing Shan after the debris flow. It is clear that the
results are similar. A plan view of the observed and predicted deposition is shown
in Fig. 2. Considering the roughness of the contour-based DEM, the comparison is
considered reasonable. The parameters, especially those related to the criteria for
erosion and deposition, interpreted from this back analysis will be used for
numerical analysis of debris flow for other parts of Hong Kong.

Next, we conduct a debris flow hazard analysis for Leung King Estate. Note that
Leung King Estate appeared in the background in Fig. 1. Field trip to this area, in
conjunction with information extracted from aerial photographs, revealed landslides

Fig. 1 Numerical simulation of the 1990 Tsing Shan debris flow
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and debris flows have occurred in the past in the mountain range next to Leung
King Estate.

Without going into the details, we will show in Fig. 3 that a hazard map was
generated by superimposing the results of a number of numerical simulations. There
are three areas on the map that the deposition may be up to 10 m (back color
zones). The southern “black zone” does not arrive the buildings (mainly appears as
outlines of Y shape and cross shape), the middle “black zone” stopped at the gabion
wall built after the 2000 event, and the northern “black zone” touched the buildings
and is a zone that remedial measures needed to be done.

In this paper, we illustrate that fluid-dynamics-based numerical simulation
incorporated with GIS provides a powerful tool in debris flow hazard mapping.

Fig. 2 Numerical simulation
of the 1990 Tsing Shan debris
flow

Potential Source Zone

Building

Deposit Depth (m)

0

0 - 2

2 - 4

4 - 6
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0 100 20050 m

Fig. 3 Debris flow hazard map for Leung King Estate
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Customized Coarse Models for Highly
Heterogeneous Materials

T.J. Dodwell, A. Sandhu and R. Scheichl

Abstract Using a toy model for subsurface flow in highly heterogeneous materials,

we demonstrate a methodology for building customized coarse models from gener-

alized eigenvalue problems in overlapping subdomains. We show that this methodol-

ogy allows to efficiently build accurate multiscale models with very few macroscale

degrees of freedom for cases where classical computational homogenization meth-

ods break down. Such methods show great potential for modelling highly heteroge-

neous materials with properties that vary on small length scales. Such problems are

typical in many engineering applications, for example subsurface flow or composite

materials.

Keywords Generalized multiscale finite elements ⋅ Upscaling ⋅ Porous media ⋅
Eigenvalue problems

1 Introduction

We consider mathematical models represented by elliptic partial differential equa-

tions (PDEs) with high contrast coefficients that vary over small length scales rela-

tive to the macroscale dimension. Such models naturally arise in many engineering

applications, for example composite materials or flow within porous media. In this

paper, we consider a toy model for porous media given by the scalar elliptic PDE

− ∇ ⋅ (k(x⃗)∇u(x⃗) = 1 ∀x⃗ ∈ 𝛺 ∶= [0, 1]2 (1)
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subject to homogeneous Dirichlet boundary conditions u(x⃗) = 0 for all x⃗ ∈ 𝜕𝛺. In

porous media flow, u(x⃗) denotes fluid pressure and k(x⃗) is a spatially varying per-

meability field. For the numerical examples within this paper we take k(x⃗) to be the

random field generated from a single sample of a log-normal random field with expo-

nential covariance function, shown in Fig. 1 (left). Such fields are not differentiable,

but they are Hölder continuous with exponent t, for any t < 1/2.

Equation 1 can be solved using finite elements (FE), for which we seek the approx-

imate solution uh ∈ Vh, the space of piece linear functions on a grid h, which satis-

fies the variational equation

∫
𝛺

k(x⃗)∇uh ⋅ ∇vh dx⃗ +
∫
𝛺

vh dx⃗ = 0 ∀vh ∈ Vh. (2)

Capturing the fine scale details, arising from the variations in k(x⃗) at the small length

scales, is computationally expensive since we require a sufficiently small mesh size

(h). It is therefore, natural to try and build efficient multiscale methods which upscale

the microscale information to a coarse/lower dimensional FE space VH , which still

captures the local microscale information of k(x⃗).
A natural question arises. What is a good choice for the coarse space VH? It is easy

to construct examples where the coarse model will provide a poor solution if VH has

insufficient degrees of freedom. For example, let VH be the span of piecewise lin-

ear finite elements on a coarse grid characterized by a mesh size H ≫ h. Consider a

block of rock (Fig. 1 (right)) spanned by a single coarse linear finite element, which

Fig. 1 Left Permeability field generated from a single realization of a log-normal random field,

characterized by a small correlation length and high contrast (colors plotted on a log scale). Right A

block of rock with three high permeability channels, spanned by a single macroscale bilinear finite

element with 4 degrees of freedom
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contains three channels of high permeability rock (white) surrounded by low per-

meability regions (black). One possible flow configuration is the fluid flows in one

direction in two channels and the opposite direction in the third (as indicated by the

arrows in Fig. 1 (right). For a single quadrilateral bilinear finite element the horizon-

tal flow can only vary linearly in the vertical direction. Therefore this local switching

of the flow is not a mode which is captured on the macroscale. For particular bound-

ary conditions, such a coarse space would give non-representative results of the true

microscale solution.

In such cases, additional degrees of freedom need to be added to VH . Particularly

in continuum mechanics this has led to the development of higher order continuum

models, for example the Cosserat or strain-gradient continuum [1, 2]. Such mod-

els often provide accurate coarse scale descriptions of the microscale although their

development often requires significant physical intuition and must be built on a case-

by-case basis. In this paper, we describe a type of generalized multiscale FE method

[3, 4] whereby the macroscale model is custom built from a few local eigenmodes

computed on overlapping subdomains. These coarse spaces have also been shown to

provide excellent preconditioners for two-level Schwarz method [5]. In this contri-

bution we focus on their use as a multiscale method and provide step-by-step details

an toy example of this exciting new multiscale method.

2 Customized Coarse Models for Highly
Heterogeneous Models

Let Vh be the set of functions spanned by the basis of piece-wise linear finite element

functions {𝜙j(x⃗)}
n∶=dim(Vh)
j=1 on a grid h, which is characterized by the small grid size

h. The indices j will denote the jth degree of freedom, and so the FE solution of (2)

in Vh can be represented as uh =
∑n

j=1 uj𝜙i(x⃗). This converts the variational problem

(2) to the system of linear equations

Ku⃗ = ⃗f (3)

where Kij = ∫
𝛺

k(x⃗)∇𝜙i ⋅ ∇𝜙j dx⃗ is the stiffness matrix, fi = ∫
𝛺

𝜙i dx⃗ the load vector

and u⃗ = [u1, u2,… , un]T the solution vector.

Starting with a non-overlapping partition of 𝛺 into N subdomains made up of dis-

joint sets of elements 𝛺 = ∪N
j=1𝛺

′
j , we extend each of the subdomains 𝛺

′
j by O layers

to achieve an overlapping partition 𝛺 = ∪N
j=1𝛺j. The part of 𝛺j that is overlapped by

neighbouring domains is denoted by the set

𝛺

◦
j ∶= {x⃗ ∈ 𝛺j ∶ ∃ i ≠ j such that x⃗ ∈ 𝛺i}.
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Fig. 2 Left Domain 𝛺 split into N = 4 non-overlapping subdomains 𝛺
′
j . Middle Overlapping sub-

domain 𝛺4 (red and orange) with the subregion 𝛺

◦
4 (orange), the overlapping region generated

once each subdomain is extended by three layers. Right Circles mark k ∈ dof(𝛺4) and crosses
mark k ∈ dof(𝛺4)∖dof(𝛺4)

Furthermore the subset of indices k for which 𝜙k is supported in 𝛺j is defined by

dof(Ωj) ∶= {k ∶ 0 ≤ k ≤ n such that supp(𝜙k) ⊂ Ωj}, (4)

whilst those degrees of freedom active in 𝛺j are denoted by the set

dof(𝛺j) ∶= {k ∶ 0 ≤ k ≤ n such that supp(𝜙k) ∩ Ωj ≠ ∅}. (5)

The definition of each of these sets can perhaps be better understood with an example,

as shown in Fig. 2.

The aim is to construct global multiscale basis functions from local eigenfunc-

tions. These local eigenfunctions are FE functions restricted to a subdomain 𝛺j. It is

therefore natural to define the function space

Vh(𝛺j) ∶= {v|
𝛺j

∶ v ∈ Vh}

and the further restriction to those FE functions with support on 𝛺j i.e.

Vh,0(𝛺j) ∶= {v ∈ Vh(𝛺j) ∶ supp(v) ⊂ 𝛺j}.

A function v ∈ Vh,0(𝛺j) can be extended to Vh by padding it with zeros. This exten-

sion operator is defined by RT
j ∶ Vh,0(𝛺j) → Vh. Its transpose Rj ∶ Vh → Vh,0(𝛺j)

defines a restriction operator of any function v ∈ Vh to Vh,0(𝛺j). In practice, the

extension operator can be encoded in a sparse matrix RT
j of 0’s and 1’s mapping

local degrees of freedom (nodal values) to the their global counterparts.

However, the local eigenfunctions are inVh(𝛺j) and so they are in general nonzero

on the boundary of 𝛺j. It is important to take care when extending these local eigen-

functions to global multiscale basis functions of Vh. To patch such (overlapping)

functions together, we scale the values at shared nodes (that lie in several subdo-
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mains) using a partition of unity operator. In that way they can be more gradually

brought to zero outside the subdomain 𝛺j.

First, we start by defining, for each global degree of freedom k, the number

𝜉k ∶= |{j ∶ k ∈ dof(Ωj)}| of subdomains in which 𝜙k is supported. Then, for each

j = 1,… ,N, the local partition of unity operator applied to a function v =
∑

k∈dof(𝛺j)
vk𝜙k ∈ Vh(𝛺j) is defined as

𝛯j(v) ∶=
∑

k∈dof(Ωj)

1
𝜉k
vk𝜙k|𝛺j

. (6)

This operator maps Vh(𝛺j) → Vh,0(𝛺j). Given this set of local partition of unity oper-

ators, we can reconstruct any global FE function 𝛷 ∈ Vh from the local parts 𝛷|
𝛺j

as follows

𝛷 =
N∑

j=1
RT
j 𝛯j(𝛷|

𝛺j
) . (7)

In practice, the partition of unity operator 𝛯j is implemented as a matrix multiplica-

tion with a diagonal matrix X(j)
acting on the vector of nodal values ⃗w(j) i.e. X(j)

⃗w(j).

The diagonal entries of X(j)
are X(j)

kk = 𝜉

−1
k , for k ∈ dof(Ωj).

A robust coarse space VH that captures enough of the fine scale variation can

now be constructed by calculating, for each j = 1,… ,N, the first m eigenfunctions

w(j,i) ∈ Vh(𝛺j), i = 1,… ,m, of a suitable generalised eigenproblem. In matrix form,

the corresponding eigenproblem for the coefficient vector w⃗(j,i)
of w(j,i)

is

K
𝛺j
w⃗(j,i) = 𝜆

(j,i)
(
X(j)K

𝛺

◦
j
X(j)

)
w⃗(j,i)

(8)

where K
𝛺j

and K
𝛺

◦
j

denote the stiffness matrices (with Neumann boundary condi-

tions) on Vh(𝛺j) and on Vh(𝛺j), respectively. Once these eigenvectors are computed

on each subdomain, the coarse space can be constructed as

VH ∶= span{RT
j Ξj(w(j,𝓁)) ∶ 𝓁 = 1,… ,m; j = 1,… ,N}.

The mapping of coarse mode coefficients in VH to the original fine scale space Vh
can be encoded by the mapping RT

H , a matrix of size dim(Vh) × Nm, with columns

RT
j Xjw

(i)
j for j = 1,… ,N and i = 1,… ,m. Finally we reformulate the original vari-

ational problem (2) in the customized coarse space so that

KH
⃗U = ⃗F (9)

where KH = RHKRT
H , ⃗U is the solution vector which contains the coefficients of the

coarse modes and ⃗F the load vector with entries ⃗Fm(j−1)+i = ⃗f TRT
j Xjw⃗

(i)
j .
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Importantly the computation of the eigenvectors on each subdomain are indepen-

dent, and the assembly of KH and ⃗F require only nearest-neighbour (subdomain)

communication. Therefore this coarse model can be assembled efficiently in paral-

lel. In effect, we reduce the problem from one large solve to N independent (parallel)

small eigenvalue problems and one inexpensive coarse solve.

3 Numerical Results and Concluding Remarks

We now test this method on the toy problem (2) with permeability field k(x⃗) taken to

be a single realization of a random field define by the log-normal distribution shown

in Fig. 1 (left). The fine mesh h is defined on a uniform square grid with h = 1∕200
(i.e. 40,000 elements and 36,601 degrees of freedom), the domain is split intoN = 16
square non-overlapping domains 𝛺

′
j , each with 2500 elements, and then overlapped

by O layers to form an overlapping partition {𝛺j}.

Figure 3 shows the first 5 eigenvectors w⃗(6,i)
, i = 1,… , 5, of subdomain 𝛺6 (with

O = 5). We note that the smallest eigenvalue is zero and the corresponding eigen-

vector is constant on 𝛺6. The same holds for any subdomain 𝛺j that contains no

degrees of freedom on the exterior boundary of 𝛺. In Fig. 4, we first compare the

fine scale solution u⃗h computed on the fine grid h (left) visually with the coarse

approximation ⃗UH with an overlap of O = 5 and m = 20 (middle). Defining the error

as 𝜀 = ‖u⃗h − ⃗RT
H
⃗UH‖2∕‖u⃗h‖2, this coarse model with over 100 times less degrees of

freedom computes the solution with 𝜀 = 0.034. Finally in Fig. 4 (right), we study

how the error 𝜀 in the coarse model relative to the fine scale model varies with the

number m of eigenmodes per subdomain, for various sizes of overlap O.

Remark: We note that here we only applied the extension operator ⃗RT
H to demonstrate

the good agreement of ⃗RT
H
⃗UH with the actual fine scale solution uh. This reconstruc-

tion on the fine grid would not be generally done, since its cost is of the same order

as an efficient iterative solver for finding uh itself. In practice, it often suffices to

project the pressure field onto a coarse FE space or to recover the fine scale solution

in localized regions of interest.

Fig. 3 Eigenvectors associated with the lowest five eigenvalues for 𝛺6 with O = 5
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Fig. 4 (Left) Fine scale solution u⃗h (Middle) Bespoke Coarse space solution ⃗RT
H
⃗UH with m = 20

and O = 5 (Right) Plot of log(m) against log2(𝜀) for various values of O

In this short paper, we have demonstrated the power of using local spectral infor-

mation to build bespoke generalized multiscale FE spaces [4, 5]. This method allows

the construction of coarse models with a fraction of the degrees of freedom of their

fine scale counterparts, which still achieve accurate solutions with microscale infor-

mation. For the particular toy model presented, the degrees of freedom are reduced

by a factor of over 100, to achieve a solution within 3% of the fine scale solution.

The methods show particular promise for applications with material parameters that

vary over a range of length scales, have a complex distribution and/or demonstrate

high contrast. For such cases, the relevant macroscale modes can be unclear, and the

use of local eigenfunctions on subdomains in the coarse space construction appears

natural.

We have not demonstrated the computational savings of this method, since we

only tested it on small toy problems with ∼3.6 × 104 degrees of freedom. For such

cases, even the fine scale problem can be solved efficiently on a single processor with

a good direct solver. We observed a factor 2–3 speed up for an error of 3%. How-

ever, for 3D problems with large numbers of degrees of freedom (dim(Vh) > 107) we

expect to see significant gains. In effect, we substitute one large solve for N indepen-

dent (parallel) small eigenvalue problems and one inexpensive coarse solve. Further

gains can be expected for more structured high contrast materials (e.g. composites

materials), since in such cases only representative local eigenproblems need to be

solved. In our current work, we are exploring the application of these methods to 3D

linear elasticity (a vector-valued elliptic PDE).
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Physical and Mathematical Modeling
of Erosion Processes Across the Scales

A. Scheuermann, H.-B. Muehlhaus, S. Galindo-Torres,
H.M.D. Harshani, M. Aminpour, T. Bittner, P. To,
M. Gholami-Korzani, D. Pedroso, L. Li and L. Gross

Abstract Internal erosion is the interaction of micro-scale hydraulic and mechanic
processes taking place within the soil structure leading to macro-scale damages
causing failures of whole constructions. While the geometrical and hydraulic
conditions on the macro-scale supporting erosion are well investigated, the pro-
cesses involved in the onset and continuation of erosion, the conditions influencing
its temporal evolution are not well understood. The investigation of the processes
involved in internal erosion requires a bijective or one-to-one approach with
simultaneously implemented physical experiments and computational modelling on
both relevant scales, micro- or pore-scale and macro- or continuum-scale. The aim
of this approach is to accomplish an improved understanding of the underlying
physics to be able to transfer this new knowledge into computational models
enabling the solving of problems on the technical scale.

1 Introduction

Erosion is the process of particle transport within the soil structure induced by
hydro mechanical forces leading either to the mixing of different fractions of soils
or the washout of particles out of the structure. Erosion takes place in the hidden
within the soil structure which is why it is referred to internal erosion [1]. To study
erosion, numerical models have been developed on both, micro- and macro-scale.
The rigorous development of these models requires validation based on experi-
ments with well-defined hydraulic and mechanic boundary conditions and with
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observations of the overall reactions in terms of discharge and deformation. Special
attention is given to the observation of the state variables governing the underlying
processes, such as the porosity.

In the following, numerical and experimental investigations and their results
from a common project of the authors are presented and discussed against the
background of improving the understanding of the temporal evolution of erosion.

2 The Continuum Scale

The most important parameter governing the process of erosion and which is
changed by erosion is the porosity. An increase in porosity increases the hydraulic
conductivity, which enhances the dislodgement of particles and consequently a
further increase in porosity. Changes in hydraulic conductivity based on porosity
can be described using the well-known Kozeny-Carman Equation [2]. Furthermore,
porosity influences the resistance of the particles against dislodgement. It is always
the interplay between hydraulic conditions and changes in structural and mechan-
ical conditions which needs to be described in computational models and observed
in experiments to provide the full picture of the overall phenomenon.

For being able to numerically simulate erosion, the dislodgement of particles
needs to be introduced in the mathematical model. But, dislodged particles do not
simply disappear. They rather transfer from a solid state in rest to a fluidized state.
There are different approaches suggested in literature to describe this transition
process which have in common to consider the fluidized solid phase as an addi-
tional liquid phase besides of water, and to use the flow velocity as the parameter
driving the transformation process [3]. As a result, the mass balance equations for
particles in rest and fluidized particles include a mass transformation rate being
positive when erosion takes place and negative for the deposition of particles.

Based on this consideration of a three-phase continuum model consisting of
water, solid phase in rest and solid phase in fluidization, Vardoulakis has developed
a numerical model for describing the pre- and post-failure processes leading to the
production of sand during suffusion [4]. The same approach of a three-phase
continuum model was chosen by Scheuermann et al. [5] to simulate contact erosion
due to horizontal water flow parallel to the interface of fine particles to coarse
particles. Alternatively, one can also assume that dislodged particles are simply
removed from the domain without simulating the flow of fluidized particles. Mer-
cier et al. [6] have simulated the Hole Erosion Test based on this assumption.
Changes in the shape of the hole were then simulated using the Level-Set method.

The Level-Set method was also used by Muehlhaus et al. [7] for simulating
changes in porosity in a fluidized bed leading to the preferential growth of the
porosity front in form of finger-like structures. Similar observations have been made
during experiments and numerical simulations using Discrete Element Modelling
(DEM) simulations coupled with the Lattice Boltzmann Method (LBM) for sim-
ulating water flow (see [8] and Fig. 1).
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Electromagnetic measurement methods, such as Time Domain Reflectometry
(TDR) or frequency-based methods are most suitable for determining changes in
porosity during experiments also as a profile [9]. As the dielectric permittivity of
water (80) dominates the permittivity of the soil/water mixture, changes in per-
mittivity can directly correlated with changes in porosity [10]. This approach is
currently used to observe porosity distributions during contact erosion tests [11].
Figure 2a shows the column used for erosion experiments. The column is designed
to form a coaxial line cell consisting of an inner conductor and an outer one. The
sample forms the dielectric between both conductors. Furthermore, a calibration
set-up (Fig. 2b) was developed to provide calibration for dielectric measurements
and further constitutive relationships such as for the shear strength of a granular
medium depending on the hydraulic gradient (Fig. 3).

3 The Micro-scale

Micro-scale simulations are frequently considered as a substitute for experimental
investigations. For instance, simulations using Discrete Element Models (DEM) are
used to derive general constitutive relationships [12] or to investigate the structural
composition of granular media [13]. And flow simulations using the Lattice
Boltzmann Method (LBM) are implemented to scrutinize the validity of flow laws
for porous media [14]. Nevertheless, especially in engineering sciences some proof
of validation of micro-scale models is expected to make sure that these models are
capable of reproducing experimental investigations before using them for para-
metric studies and extrapolation.

The application of DEM and LBM allows the user to observe every desirable
detail during the numerical simulation. Naturally, there are limitations if aspects on
even smaller scales are considered, such as the effect of attracting and repelling
surface forces on particles. But nevertheless, DEM allows to observe every motion
of particles and the force created between them. And with LBM pressure, velocity

Fig. 1 Comparison between numerical results using a a continuum model to simulate the growth
of a porosity front in a fluidized bed [7] and b results from DEM/LBM simulations [8]

Physical and Mathematical Modeling of Erosion Processes … 587
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and moving direction of any liquid in every LBM cell can be captured. These
possibilities frequently tempt users to try to look into parameters, which cannot be
observed in physical experiments.

Fig. 2 a Column erosion tests with simultaneous observation of porosity. b Calibration set-up for
investigating dielectric, mechanic and hydraulic parameters of fluidized granular media [11]

Fig. 3 a Relationship between porosity and dielectric permittivity at 100 MHz. b Relationship
between shear strength and applied hydraulic gradient of a granular medium before fluidization

588 A. Scheuermann et al.



www.manaraa.com

In the case of erosion, one problem considered with coupled DEM/LBM sim-
ulations concerned the onset of erosion. Focus was put in the question which
parameter first shows the onset of erosion, and what first visible manifestation of
erosion occurs in terms of movement of particles. With this question in mind,
simulations on contact erosion have been conducted [15] and compared to exper-
imental investigations implemented with glass beads [10]. The parameter used to
quantitatively compare the results from simulation and experiment was the porosity.
This comparison between experiments and simulation showed a satisfactory
agreement. However, with respect to the parameter indicating the onset of erosion,
several parameters including rotation of particles indicated the beginning of erosion.
In contrast to the common understanding, it was not the movement of base particles
in flow direction showing the first visual manifestation of particle movement. It was
the penetration of coarse filter particles into the bed of fines indicating the onset of
erosion which has been also observed in experiments.

Particle Imaging Velocimetry (PIV) is a well-known and suitable experimental
method for investigating the pore-scale flow. For this method it is necessary to use
particles and a liquid which are refractive index matched to create an overall
transparent medium. This can be achieved by using for example glass beads in
combination with oil or glycerin [16]. Seeding particles are then used as tracer to
mark the liquid, which can be illuminated in a light sheet usually created by a laser
system. A series of pairs of pictures taken at a known time interval using a
high-speed camera are then used to quantify the flow field in the considered pore
space. In order to simplify experimental procedures, a new set-up was developed
[17]. This set-up involved a light emitting diode (LED) based light source for
creating the light sheet. Furthermore, water was used as liquid in combination with
hydro-gel beads to create a more adaptable set-up. The combination of LBM
simulations and experiments using PIV allowed the direct comparison of flow
patterns (Fig. 4) and the statistical analysis of flow velocities in porous media
(Fig. 5).

Fig. 4 Flow patterns measured with PIV (left) and simulated using LBM (right)
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4 Discussion and Conclusions

The presented bijective approach of integrating the development of mathematical
models and experimental set-ups optimizes the outcome of numerical tools to be
developed. Frequently, parameters are involved in mathematical models, which
cannot be observed using conventional experimental set-ups. At the same time,
experiments also frequently produce results, which cannot be explained based on
macroscopic observations only. In both cases, unconventional observation methods
are required, which provide additional information of internal, mostly structural
changes of the sample during testing. These observation tools, in form of tomo-
graphic methods, visual methods or geophysical methods, are available and need to
be integrated in experimental set-ups. This contribution shows, as we hope, the
great advantage of combining the developments of mathematical and experimental
tools for developing numerical solutions for engineering problems.
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Modelling of Shear Localization During
Granular Flow Within Non-local
Hypoplasticity Using Material Point
Method

Pawel Hajko and Jacek Tejchman

Abstract The paper presents some 2D simulation results of shear localization
during advanced granular flow. The sand behaviour was simulated using the finite
element method based on hypoplasticity enhanced by a characteristic length of
micro-structure by means of a non-local theory. In order to avoid the mesh dis-
tortion, the material point method was used. A satisfactory agreement between
numerical and experimental results was achieved.

1 Introduction

Shear localization is a fundamental phenomenon in granular materials. Thus, it is of
primary importance to take it into account while modelling the granular behaviour
[1]. Localization under shear occurs either in the interior domain in the form of a
spontaneous shear zone as a single zone or as a pattern of zones. It may be also
created at interfaces in the form of an induced single zone where structural members
interact and stresses are transferred from the surrounding granular body to the
structure. When modelling shear zones within continuum mechanics, three basic
conditions have to be fulfilled [1, 2]: (a) the material behaviour has to be described
with a realistic constitutive model, (b) the constitutive model has to be enhanced by
a characteristic length of micro-structure in order to obtain mesh-independent
results and (c) the excessive mesh distortion has to be avoided by means of a
suitable description of the material motion.

The paper deals with the description of 2D quasi-static shear localization in
cohesionless sand during plane strain compression and confined silo flow between
two parallel walls. In order to realistically capture the sand behaviour, a hypoplastic
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constitutive model was used. To properly capture the width of shear zones, the
model was enhanced by a characteristic length of micro-structure by means of a
non-local theory. The Material Point Method was used which was suitable for
problems with an excessive mesh distortion and entanglement during advanced
granular flow [3]. Numerical results were compared to corresponding experiments.

2 Material Point Method

The Material Point Method was used to simulate the motion of granular bodies. We
took advantage of the explicit MPM implemented in the open program UINTAH
1.6.0 (developed at Utah University). In this approach, the continuum is discretized
by material points whose motion is traced by a background arbitrary mesh. In this
method the material is not connected with the finite element mesh. This approach
deals instead of finite elements with material points which carry the information
needed for the analysis (mass, momentum, stresses, constitutive parameters). The
material points pass the required information to the mesh in each time step. The
time step data are resolved on the mesh level and given back to the material points.
The material point positions, stresses and constitutive parameters are next updated.
The equation of the virtual work in MPM is the following [3]:

∫
Ω
ϱ aiwi +

1
ϱ
σijwij

� �
dx= ∫

Ω
ϱbiwidx+ ∫

Γσ

tiwids+ ∫
Γc

σijnjwids, ð1Þ

where Ω describes the region of the analyzed continuum at the time t∈ ½0, T �, ∂Ω is
the boundary of the region Ω where the displacements Γu, stresses Γσ and contacts
Γc are given, σij is the Cauchy stress tensor, ti denotes the surface traction, bi is the
vector of body forces, ϱ represents the mass density, ai is the vector of accelera-
tions, wi is the weighting function and nj denotes the unit vector outwardly normal
to the boundary region ∂Ω. The entire mass of the continuum sub-region was
concentrated in representative material points. The density field around each
material point was expressed as:

ϱ xð Þ= ∑
N

z=1
Mzδðx−XzÞ, ð2Þ

where Mz is the mass and Xz is the position of z-th material point, δðxÞ denotes the
Dirac delta function with dimension of the inverse of volume and N is the number
of material points. Each time increment included two steps (Lagrangian step and
convective step). In the Lagrangian step, the calculations were carried out in a
similar way as in the usual FEM. In the convective step the material points
velocities were mapped to the computational mesh.
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3 Constitutive Model for Granular Materials

Hypoplastic constitutive models, which have been developed at Karlsruhe
University, are of the rate type [1]. They are capable of describing a number of
significant properties of granular materials: non-linear stress-strain relationship,
dilatant and contractant behaviour, pressure dependence (barotropy), density
dependence (pycnotropy), dependence on the deformation rate direction and
material softening. A further feature of hypoplastic models is the inclusion of
critical states, i.e. states in which a grain aggregate can continuously be deformed at
constant stress and constant volume. In contrast to elasto-plastic models, a
decomposition of deformation components into elastic and plastic parts, the for-
mulation of a yield surface, plastic potential, flow rule and hardening rule are not
needed. Moreover, both the coaxiality (understood as a coincidence of the direc-
tions of the principal stresses and principal plastic strain increments) and
stress-dilatancy rule are not assumed in advance. The hallmark of these models is
their simple formulation and procedure for determining material parameters with
standard laboratory experiments. The material parameters are related to granulo-
metric properties, viz. size distribution, shape, angularity and hardness of grains.
The following representation of the general constitutive equation was used [4, 5]

σ◦ij = fs Lijðσ⌢kl, dklÞ
h i

+ fdNijðσ⌢ijÞ
ffiffiffiffiffiffiffiffiffiffiffi
dkldkl

p
, ð3Þ

where σoij is the Jaumann stress rate tensor, σ⌢ij denotes the normalized stress, Lij and
Nij are the isotropic tensorial functions, dkl is the rate of deformation, fs , fd represent
the stiffness and density factor. The hypoplastic FE-calculations were carried out
with the non-local modulus of the deformation rate d*. The modulus of the
deformation rate in Eq. 3, d=

ffiffiffiffiffiffiffiffiffiffiffi
dkldkl

p
, was treated non-locally [1, 2, 6]:

d*ðxÞ=

R
V
ω jjx− ξjjð Þ dðξÞdξ
R
V
ω jjx− ξjjð Þdξ with ωðxÞ= 1

lc
ffiffiffi
π

p e− ðr ̸lcÞ2 , ð4Þ

where: d*—the non-local modulus of deformation, V—the volume of the body, x—
the coordinates of the considered (actual) point, ξ—the coordinates of the sur-
rounding points and ω—the weighting function, lc—the characteristic length of
micro-structure and r—the distance between two material points. A non-local
approach may be used independently of the motion formulation. The characteristic
length of micro-structure lc was taken as 1.5 mm based on comparative calculations
of the thickness of a shear zone in the interior of the granular specimen of Karlsruhe
sand during a plane strain compression test [6]. The specimen material constants
were assumed as for Karlsruhe sand [1]: ei0 = 1.3, ed0 = 0.51, ec0 = 0.82,
ϕc = 30°, hs = 190 MPa, β = 1, n = 0.5 and α = 0.3.
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Fig. 1 FE results for plane strain compression: A evolution of mobilized internal friction angle ϕ
versus normalized vertical displacement of top boundary u/h and B distribution of void ratio e at
residual state (with scale attached) for different mesh of material points: a 22 × 112, b 44 × 112
and c 44 × 170 (h—specimen height)
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4 Numerical Results with MPM

In the first step, two different BVPs with shear localization were simulated with a
moderate mesh distortion to check the capability of MPM. Initially plane strain
compression of the initially dense sand specimen was numerically simulated with
the size of 140 × 40 mm2. The deformation was induced in the specimen by
prescribing a constant displacement along the top. Gravity was omitted. The lateral
pressure was 200 kPa and initial void ratio was eo = 0.6. In order to induce a shear
zone, the imperfection of the size 5 × 5 mm2 in the form of a higher void ratio
(eo = 0.9) was inserted.

Figure 1 shows the evolution of mobilized internal friction angle versus the
normalized vertical top displacement and the distribution of void ratio in the
specimen for the different number of material points. During deformation initially 2
shear zones occurred, starting from the initial imperfection. Later a single shear
zone dominated. The thickness of the shear zone was 5 × lc and its inclination
against the bottom was about 54°. The results were in agreement with experiments
[1] and did not depend on the mesh of material points (Fig. 1).

Fig. 2 Distribution of void ratio e (with scale attached) in sand after silo bottom displacement u:
a u = 2 mm and b u = 4 mm
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Later confined granular plane strain flow was simulated in a silo with a slowly
movable bottom (height of 0.5 m and width 0.2 m). The silo walls were rigid and
very rough (the wall friction angle was 45o [1]). The initial void ratio was eo =
0.55. The results of the shear zone formation in the silo based on the distribution of
void ratio are shown in Fig. 2.

The results indicate that dilatant shear zones occurred along the very rough walls
and inside the flowing sand (zone pattern of a parabolic shape). The outcomes are in
agreement with the silo experiments [6].

5 Conclusions

The FE results show that MPM based on a hypoplastic constitutive model with
non-local softening properly captures shear localization in granular bodies during
advanced deformation (with a moderate mesh distortion). The numerical results
were in agreement with the experimental outcomes. They were insensitive of the
mesh of material points.
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Instability of Geomaterials Caused
by Transitional Negative Stiffness

Arcady Dyskin and Elena Pasternak

Abstract A mechanism of instability of geomaterials in compression is proposed
based on the phenomenon of transitional negative stiffness associated with the
process of crack/fracture formation. This phenomenon acts only for a very short
time as the fracture is being formed. The negative stiffness cracks increase the
Poisson’s ratio and thus are capable of making nearly incompressible material
elastically unstable. A geomaterial can reach the limiting value of the incremental
Poisson’s ratio due to dilatancy observed in compression. While dilatancy is a
non-linear phenomenon, incrementally, at the time of fracture formation it is elastic
and hence can be made unstable by the transitional negative stiffness.

1 Introduction

Compressive loading of geomaterials leads to their instability and failure when the
peak stress is reached. An important characteristic feature of instability in com-
pression is the dependence of its manifestation upon the stiffness of the loading
frame: if the frame is soft, the complete (and often violent) failure is observed when
the peak is reached, while if the frame is sufficiently stiff the post-peak softening
phase is exhibited whereby the descending branch of the stress-strain curve can be
registered. In other words, sufficiently stiff frame, that is the frame that, in the process
of loading, releases insufficient amount of elastic energy to cause instability of the
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sample permitting post-peak regime, while a soft frame is incapable of stabilisation
(e.g., [1]). Such dependence of the loading frame stiffness is similar to the behavior of
an element with negative stiffness, which is unstable on its own (since the elastic
energy is not positive definite), but can be stabilised if the encompassing system
(loading frame in this case) can store enough energy to make the total energy of the
system with the negative stiffness element positive definite [2–6].

This similarity is supported by the negative values of the deformation modulus
in the (stable) post-peak regime, when the displacement/strain increases. Subse-
quently the mechanics of immediate failure (instability) or post-peak softening
(stability) can be based on the development of negative stiffness elements in geo-
material in the process of its compressive loading.

A mechanism of negative stiffness recently put forward is the rotation of
non-spherical constituents (e.g., grains, blocks) in the presence of compressive load
[2–6]. The effect comes from the moment equilibrium of a non-spherical constituent
about a contact point whereby the resistance to rotation associated with the com-
pressive force decreases as the rotation progresses. While in the case of granular
matter or blocky rock mass this mechanism and the associated instabilities are
apparent [7–11], in rock the rotation of grains requires development of considerable
damage capable of reducing the matrix resistance to grain rotation. However, the
needed degree of damage does not always develop.

In this paper we consider another mechanism—a mechanism that creates neg-
ative stiffness only momentarily. It is the transitional negative stiffness character-
istic of the cracks being formed. While the negative stiffness only lasts for a very
short time, we assume that this time interval is sufficient to cause instability owing
to the fact that the velocity of crack growth is considerably smaller than the
velocities of waves whose propagation eventually brings the sample to equilibrium
after the crack formation. (Indeed, the maximum crack growth speed is half of the
Rayleigh wave speed and this needs some time to be reached).

2 Transitional Negative Stiffness

Consider an unbounded elastic material under uniform load σij0 and suppose that a
crack is formed. Assume, for the sake of simplicity, that the crack is planar and
disc-like of radius a. Introduce a local coordinate set x1′ x2′ x3′ with axis x3′ directed
perpendicular to the crack plane. Let the applied stress in the local coordinate frame
have components σij′ . We also assume for now that the normal stress component is
not negative such that the crack does not get closed. (In real cracks there is always
some initial aperture small enough to be neglected when the displacement dis-
continuity is determined, but sufficient to prevent the crack closure, at least under
load of low magnitude). Under this stress the crack develops displacement
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discontinuity, Δui′ , distributed over the crack plane A. Hereafter we are only
interested in the integral of displacement discontinuity over the crack plane, which
reads (e.g. [12]):

Vi′=
ZZ

A
Δui′dS=

8π
3
1− ν20
E0

a3cðiÞσi3′ , ð1Þ

where E0 and ν0 are the Young’s modulus and Poisson’s ratio of the material the
crack is in, a is the crack radius. For a conventional disc-like crack

cð1Þ = cð2Þ =
4
π

1
2− ν0

, cð3Þ =
2
π
. ð2Þ

For the normal component of the displacement discontinuity, Vi
′ it is just the

volume of crack opening; two other components can be called “shear volumes”.
It is easy to show that the energy change, associated with the crack opening is

Eopening =
1
2
Vi′σi3′ =

4π
3
1− ν20
E0

a3cðiÞσi3′ σi3′ , ð3Þ

where the summation over index i is presumed.
Now consider the energy change, associated with the crack formation. At the

moment of formation of the crack, the corresponding stress components acting on
the plane of future crack, σi3′ , is equal to the material strength. After the crack is
formed, these stress components vanish. In other words, σi3′ can be thought of as
stresses holding the crack faces together thus effectively removing its presence. In
the process of crack formation, when the opening commences, σi3′ is applied to the
crack faces in the direction opposite to their displacement thus producing negative
work. Assuming that stress components σi3′ reduce to zero linearly with the crack
displacements we arrive to the negative energy associated with crack formation

Eformation = −
1
2
Vi
′σi3′ = −

4π
3
1− ν20
E0

a3cðiÞσi3′ σi3′ . ð4Þ

Therefore we can introduce negative stiffness associated with crack formation:

ki = −
8π
3
1− ν20
E0

a3ci. ð5Þ

This negative stiffness acts only during the short time of crack formation and for
that reason will be called the transitional negative stiffness.
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3 Momentary Change in Effective Elastic Moduli
Associated with Transitional Negative Stiffness

Consider now macroscopic (effective) elastic moduli the (geo) material temporarily
acquires during the duration of crack formation. In order to accomplish this we use
the theory of effective characteristics (e.g. [12]) and assume that the crack con-
centration is small enough such that the crack interaction can be neglected (indeed,
the probability that during the duration of the crack formation other cracks can be
formed not far from each other is negligible).

Central for calculating the effective characteristics is expression (1), which
reflects the traditional crack opening. The energy associated with the opening is
given by (3). The energy associated with the crack formation (4) is the same but
with reverse sign. Therefore in order to find the effective characteristics caused by
transitional negative stiffness one can use the conventional equations for calculating
the effective characteristics of material with non-interacting cracks and revert the
sign of the terms responsible for the effect of cracks.

For the case of disc-like cracks the conventional theory of effective character-
istics gives (e.g. [12]):

E=E0 1−
16
45

10− 3ν0ð Þ 1− ν20
2− ν0

v
� �

, ν= ν0 1−
16
15

3− ν0ð Þ 1− ν20
2− ν0

v
� �

ð6Þ

Here E0 and ν0 are the Young’s modulus and Poisson’s ratio of the material
(between the cracks) and

v=N⟨a3⟩≪ 1, ð7Þ

N is the number of cracks per unit volume and <.> denotes averaging over all
cracks.

Reverting signs in (6) we arrive at the expression for transitional effective
moduli, that is the moduli the material temporarily show during the crack formation:

E=E0 1 +
16
45

10− 3ν0ð Þ 1− ν20
2− ν0

v
� �

, ν= ν0 1 +
16
15

3− ν0ð Þ 1− ν20
2− ν0

v
� �

ð8Þ

These equations suggest that both the effective Young’s modulus and Poisson’s
ratio increase. Yet this increase is short leaved, after the cracks are formed the
material assumes the effective moduli, which are given by Eq. (6), that is, as
expected, smaller than the moduli of the material.
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4 Elastic Instability Associated with Transitional Negative
Stiffness

Examining Eq. (8) one can see that the transitional negative stiffness increases both
the Young’s modulus and Poisson’s ratio (because of the ‘plus’ in (8)). This
increase is however marginal (since the increase is proportional to v <<1) and
temporary. While the increase in the Young’s modulus does not affect the material
stability, the increase in the Poisson’s ratio can throw it beyond the upper boundary
ν = 0.5, when ν0 is close enough to 0.5, which will render the material unstable.

Suppose ν0 = 0.5 − ε, where ε <<1 is a small number. Then the concentration
of forming cracks needed to bring the effective Poisson’s ratio to the upper
boundary ν = 0.5 and thus make the geomaterial unstable is

v> 3 ̸16ð Þε+O ε2
� �

. ð9Þ

Thus the critical value of the concentration of forming cracks marking the
geomaterial unstable is proportional to ε and hence can be really small as long as
the Poisson’s ratio of the geomaterial reached without these cracks is close to the
limit of incompressibility 0.5. Usually the geomaterials have Poisson’s ration far
from 0.5, however under compressive load they show dilatancy, that is the increase
in the relative volume of the sample thus reaching the incompressibility, whereby
the incremental Poisson’s ratio can reach 0.5.

A comment is due here. The phenomenon of dilatancy is non-elastic as it
involves crack growth in compression (e.g., [13]) and hence energy dissipation.
However the process of crack growth in compression is stable and slow compared
to the process of crack formation. Therefore during the action of the effect of
transitional negative stiffness the geomaterial can be considered elastic. Hence, as
soon as the transitional effective Poisson’s ratio reaches 0.5, the geomaterial
instantaneously loses stability, presumably in the form of strain localisation.

5 Conclusions

We consider a mechanism of instability of geomaterials constituted by what we call
a transitional negative stiffness. This is a momentary effect produced by developing
fractures (or broken bonds), which for a very short time of energy release act as
negative stiffness elements. After the fracture is formed it immediately becomes a
conventional fracture with usual positive stiffness/compliance characteristics. We
demonstrate that the forming fractures even in low concentrations are capable of
momentarily bringing the Poisson’s ratio to 0.5 if the geomaterial itself had Pois-
son’s ratio (or incremental Poisson’s ratio) close to 0.5; the latter is characteristic of
compressive loading of geomaterials due to the phenomenon of dilatancy.
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DEM Modelling of Instability
of Particulate Materials. Transitional
Negative Stiffness

Yuan Xu, Elena Pasternak and Arcady Dyskin

Abstract We show that broken bonds can act as negative stiffness elements, but
during a very short time. If at the time of bond breakage the geomaterial was in an
almost incompressible state due to for instance dilatancy in compression, the
breakage leads to material instability that starts at the peak stress.

1 Introduction

Quasi-static loading of geomaterials in compression leads to either instantaneous
failure when the loading frame is not stiff enough or, in displacement-controlled
loading, to strain localisation resulting in formation of shear-type fracture. The strain
localisation stage is characterised by post-peak softening that is the descending
branch of the stress-strain curve. The negative slope of the stress-strain curve in
post-peak softening and the fact that the mere presence of this stage requires high
stiffness of the loading frame suggest the involvement of negative stiffness elements
of a sort. It was discussed in [1–3] that while the negative stiffness element is
unstable due to the fact that its potential energy is not positive-definite, the material
stability can still be ensured if the loading is provided by a loading frame whose
stiffness is sufficient to make the potential energy positive definite.

A number of mechanisms engineered to exhibit, under displacement-controlled
loading, negative stiffness were proposed (e.g. [4, 5]). The only natural mechanism
of negative (shear) stiffness and instability of particulate and granular materials
suggested in [1–3, 6–12] is based on the rotation of non-spherical (non-circular)
particles in the presence of compression whereby a descending branch of the shear
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force-displacement curve is exhibited with the slope proportional to the magnitude
of compressive force.

It is the essence of this mechanism that the particles are not spherical; spherical
(circular in 2D) particle does not produce the effect of negative stiffness. Yet direct
discrete element modelling involving only spherical or circular particles [13, 14]
demonstrates the overall post-peak softening, which indicates the presence of
negative stiffness elements associated neither with the particle shape nor rotation. It
was suggested in [15] that the effect of negative stiffness can be momentarily (for a
very short time) attributed to fracture production (so-called transitional negative
stiffness [15]), the reason being that the cohesive forces resisting the crack for-
mation act in the directions opposite to the crack face displacement thus producing
negative work. Here we demonstrate that the bond breakage also creates the effect
of transitional negative stiffness. Following [16] we use 2D numerical simulations
using the Particle Flow Code 2D (PFC 2D).

2 Transitional Negative Stiffness of a Separate Link
and Instability

In order to investigate the mechanics of transitional negative stiffness we made a
simple DEM model, Fig. 1. We use a PFC 2D built-in contact model Linear Parallel
Bond model (PB). In order to keep our model simple we assume the radius of the
each disc of 1 m. The only contact normal stiffness activated is set to 100 N/m. The
top and bottom walls move towards each other to compress the particles. The left

Fig. 1 The model
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and right walls are set to keep all particles in contact. During loading the average
force exerted on the top and bottom walls is monitored. Once the force reaches a set
value of 1 N, the normal stiffness of the white contact (the link between the two
discs on the left) is reduced to 10 N/m to simulate bond breakage. The
force-displacement curve, Fig. 2, shows the corresponding force drop. A zoom in
the region of the force drop, Fig. 3 shows that the curve exhibits negative slope. We

Fig. 2 Force-displacement
curve

Fig. 3 Zoom at the force
drop
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shall note here that micro parameters in PFC do influence the macro properties
however there is no definitive relationships between them. Hence the value we use
for bond stiffness is only for the purpose of keeping the model simple.

This negative stiffness effect is momentary. It is present only during the tran-
sitional time when the sample reaches equilibrium after bond breakage. We
extracted the data from PFC and confirmed that the drop in the force-displacement
curve covers 270 computational steps. In order to gauge the extent of these 270
steps we found the number of computational steps needed for numerical stabili-
sation, i.e. the absence of further change of the forces in the walls. By applying a
step loading to the model (with the original stiffness of the bonds) it was found that
it took 580 computational steps to reach the numerical convergence. Hence the
force drop requires less computational steps than the number of steps for numerical
stabilisation. Hence we observed the transitional negative stiffness.

The transitional negative stiffness acts during a very short time such that the
concentration of negative stiffness elements at any time is very low. Subsequently,
the loss of stability associated with reaching critical concentration of negative
stiffness elements [3, 11] cannot be expected. It was hypothesised in [15] that the
fracture or strain localisation are initiated by elastic instability caused by transitional
negative stiffness. The mechanics of the instability is based on the increase in
Poisson’s ratio caused by negative stiffness fractures [15] (Fig. 5 shows that
Poisson’s ratio increases as the axial stress peaks) such that if the geomaterial is
already in a nearly incompressible state the transitional negative stiffness brings the
Poisson’s ratio to its limit. This limit (0.5 in 3D isotropic case) makes the elastic
energy loose its positive definiteness leading to the instability.

The near incompressible state in geomaterials can be reached due to dilatancy
produced in compression. Of course, the phenomenon of dilatancy is non-elastic as
it involves crack growth in compression [17] and the associated energy dissipation.
Assuming that the process of crack growth in compression is stable and slow
compared to the process of crack formation one can conclude that during the time of
the transitional negative stiffness the geomaterial can be considered elastic. As soon
as the transitional effective Poisson’s ratio reaches its limiting value (0.5 for the 3D
isotropic material) the geomaterial instantaneously looses stability.

This hypothesis is verified in the next section using 2D discrete element mod-
elling. The assembly of discs is isotropic. It should however be noted that while the
assembly is isotropic in the plane, it is characterised by infinite stiffness in the third
direction. This, in effect, corresponds to the transversal-isotropic material with
plane of isotropy coinciding with the computational plane. Therefore the volumetric
strain is the sum of only two strain components, εx + εy in coordinate set
(x, y) drawn in the plane of modelling. It is easy to show that the instability of such
material is reached when the (incremental) Poisson’s ratio equals 1.
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3 Simulation of Instability in Compression

The simulation is conducted according to the following procedure: generating initial
compact sample, installing bond, loading sample to isotropic compressive stress
state of 10 MPa and conducting confined compressive test until failure of the
sample. The initial sample contained 4131 particles. Particles of radius ranging
from 0.3 to 0.42 mm were randomly generated in a box of dimension of 31.7 mm
by 63.4 mm surrounded by four walls. The density of the particles was 2630 kg/m3

and the porosity of the sample was 16%.
For the bond we used the PFC 2D Linear Parallel Bond model (PB). It consists

of two sets of springs: the linear springs and parallel springs both characterised by
normal and shear stiffnesses. The bonds breaks when either tensile strength σt or
shear strength τt of the bond is exceeded.

In many numerical studies conducted using PFC, the tensile strength and shear
strength of PB were set to be close (e.g. [16]). However as demonstrated in [18] local
tensile failure caused by moment stress can act as a mechanism of global failure of
particulate materials. To avoid this we set the shear bond strength 7 times higher than
the tensile bond strength to eliminate shear failure. The Young’s modulus for both
linear and parallel bonds was E = 62GPa, the stiffness ratio kn/ks = 2.5. The tensile
and shear strengths were σt = 157 MPa and τt = 1099 MPa.

In PFC we cannot obtain macro-properties of the virtual sample directly from
properties of particle bonds. Gradual modification of the bond properties has to be
made in order to let the sample reach realistic macro-properties however this can be
time consuming. Hence in our study we took the bond parameters as well as particle
density, radius and porosity from the existing literature [16].

In simulations, we firstly loaded the samples to isotropic compressive stress of
10 MPa. Then the top and bottom walls move towards each other at a rate of
0.05 m/s. While this loading rate looks very high, PFC simulations are based on the
dynamic mode governed by Newton’s second law, the time step in each calculation
cycle is chosen to be infinitely small (e.g., we used 10−9 s). Hence for a static
analysis this rate can be considered as slow enough. During the entire simulation
lateral stress was kept at 10 MPa by a simulated servo-control mechanism.

The bonds fail when the sum of tensile stresses acting on the bond cross-section
caused by translational movements and relative rotations of bonded particles
(moment stress) reaches the tensile strength. The virtual sample at failure and the
stress-strain curve are shown in Fig. 4. Post peak softening is obtained and shear
failure mode is observed.

The number of computational steps required to reach numerical equilibrium is
found to be 100,000. This was used as window to compute incremental Poisson’s
ratio. Figure 5 shows incremental Poisson’s ratio and axial stress respectively. It
can be seen that the peak axial stress corresponds to the incremental Poisson’s ratio
reaching 1. Therefore the transitional negative stiffness induced by bond breakage
can be responsible for the global instability of the particulate material.
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4 Conclusions

The discrete element simulation confirms that the bond breakage can induce the
effect of negative stiffness albeit for a short time. The mechanics of instability
associated with the transitional negative stiffness is in increasing Poisson’s ratio of
a nearly incompressible material to its limit corresponding to full incompressibility.
In 2D discrete element simulation the limit of Poisson’s ratio is 1. The discrete
element simulation of sample failure in compression shows that the peak stress and
the onset of instability just correspond to incremental Poisson’s ratio equal 1.

Fig. 4 PFC modelling results. a Broken bonds at failure. b Stress-strain curve

Fig. 5 Incremental poisson’s ratio and axial stress versus time step
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The Effect of Constriction in Hydraulic
Fracturing

Junxian He, Elena Pasternak, Arcady Dyskin, Maxim Lebedev
and Boris Gurevich

Abstract Fractures in geomaterials e.g., hydraulic fractures often contain
bridges—parts of unbroken material connecting the opposite faces of the fracture
distributed over the fracture and constricting its opening. Our laboratory experi-
ments demonstrate that the bridges can even hold the sample cut through by a
fracture together, in one piece. We model such a fracture as a crack with Winkler
layer whose stiffness is controlled by the bridge geometry and distribution. The
model shows that short constricted fractures are insignificantly different from the
conventional cracks; only large fractures, i.e. the fractures whose size is of the order
of the characteristic scale of the bridge constriction are affected. The constricted
fractures have the opening and the Mode I stress intensity factor bound as the
fracture dimensions proportionally increase, which distinguish them from the
conventional cracks where both the opening and the stress intensity factors tend to
infinity as the crack size increases.

1 Introduction

Fractures and cracks in geomaterials often contain bridges that are parts of
unbroken material connecting the opposite faces of the fracture. In fractures opened
and driven by putting fluid under pressure, such as in hydraulic fracturing, the
bridges are perceived as obstacles for fluid flow, similarly to the effect of the
roughness of crack surfaces [1]. Bridging is often observed (in different materials)
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near the crack front (crack tips in 2D) and considered as part of the fracture process
zone underpinning its special mechanical behaviour (e.g. [2–5]). However, if the
bridges are distributed over the whole fracture they could constrict its opening (we
presume that the fracture is of Mode I). Hereafter such a fracture will be called
fracture with constricted opening (HFCO).

2 Evidence of Distributed Bridges in Physical Model
of Hydraulic Fracture

In order to demonstrate the existence of distributed bridging we initiated hydraulic
fractures in laboratory using a modelling material: mortar with water to cement
mass ratio of 0.4 and sand (particle size below 0.15 mm) to cement ratio of 1. The
fractures were produced in cylindrical samples of 38 mm diameter and 76 mm
length with a 4 mm diameter model borehole. The fracturing fluid (glycerol of
viscosity 1410 cp) was injected from the top surface through a stainless steel tube of
10 mm in length and 3 mm outer diameter. The steel tube also played a role of
casing leaving a 40 mm open section of the model borehole uncased.

The fluid pressure was increased incrementally from initial 400 psi with a step of
100 psi till 1000 psi was reached; after that the pressure increment was reduced to
50 psi. The flow rate in each step was 0.06 ml/min. The pressure was being
increased until the fracture was created. The formation of macroscopic fracture was
indicated by a dramatic increase of flow rate and sudden pressure drop.

Before and after hydraulic fracturing test, the X-ray micro-CT scanning was
performed on each sample using the Xradia Versa XRM-500. The resolution of the
scanned image was 33.72 micron per pixel.

The fracturing pressure for sample 1 and sample 2 was 1840 psi and 1450 psi
respectively. In sample 1, two major vertical fractures were observed, Fig. 1 (see
[6] for more detail). Investigation of the x-ray images showed that the length of the
rock bridges was about 2 mm. The bridges of similar kind could be observed at
different locations of the sample 1. In sample 2, two vertical and one horizontal
fractures were created, Fig. 1. A fragment of the x-ray micro-CT scan of sample 2
at the (lower) resolution of 33.72 micron per pixel is presented in Fig. 2. It shows
the bridges that connect the opposite faces of the fracture. Similar bridges can also
be observed in other scan slices at different locations of the hydraulic fracture.

Despite the fractures traversing the whole samples, Fig. 1, the samples were still
in one piece even after cutting out the top parts with the casing glued in. This
indicates that the bridges are capable of holding the opposite surfaces of the fracture
thus effecting fracture constriction.

Another hydraulic fracture test was conducted using a real rock (Metasediment).
The fracture again traversed the sample but it was still in one piece. Also a
force-displacement curve, Fig. 3 obtained from the direct tensile test on rock
sample in the direction normal to fracture plane permitted the estimation of the total
bridge stiffness: k = 110 N/mm.
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Fig. 1 X-ray CT images of samples 1 and 2 with hydraulic fractures

Fig. 2 Micro-CT image
of a bridge

Fig. 3 Tensile
force-displacement curve
of rock

The Effect of Constriction in Hydraulic Fracturing 615



www.manaraa.com

3 Model of a Single Bridge

The configuration of the bridges suggests the model of the constriction effect by
representing the bridge as a beam of thickness h deformed in bending, Fig. 4.
Assume the beam having cross-sectional area h by b, where h is the beam thickness.
Examination of Fig. 2 reveals that the bridge cross-section is not uniform with one
end being thinner than the other. We will approximately model this feature by
assuming that one end of the beam is clamped, while the other end is pinned. For
such a beam the equivalent stiffness (the coefficient relating the displacement and
the applied force) is (e.g. [7])

keq =Eh3 ̸ 12b2
� �

, ð1Þ

where E is the Young’s modulus of the bridge material. This will be approximately
taken as stiffness of a single bridge.

Let N be the total number of bridges distributed over area A of the fracture. Then
the equivalent stiffness of all the bridges in the fracture is:

k=Nkeq =ENh3 ̸ 12b2
� �

. ð2Þ

From here, knowing the measured stiffness, k = 110 N/mm, average bridge
thickness, h = 0.05 mm, length b = 0.5 mm and that the total number of bridges
N = 77 were observed in the fracture one can back calculate the rock Young’s
modulus, E = 34 GPa. This value is within the order of magnitude accuracy
compared to the value of static modulus of approximately 74 GPa estimated from
the measured dynamic modulus of 88 GPa for this rock [8].

4 Crack with Constricted Opening

Taking into account the number of bridges distributed over the whole fracture rather
than only the fracture process zone, its opening can be modelled at the scale
macroscopic with respect to the bridge scale (maximum of bridge length and the
distance between the bridges). At this scale the joint action of bridges can be

h Faces of fracture 

Fig. 4 Model of a bridge as a
beam of size b and thickness h
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homogenised, which leads to modelling the crack with constricted opening as a
crack with Winkler layer under load (Fig. 5). The Winkler layer is characterised by
effective stiffness kW relating displacement discontinuity Δu with normal stress,
σ = kWΔu. Here kW = k/A, where A is the area over which the bridges are dis-
tributed. Using (2) one obtains:

kw =ENAh3 ̸ 12b2
� �

≅Eh3 ̸ 12L2b2
� �

, ð3Þ

where NA = N/A, the number of bridges per unit area, L is the average distance
between the centres of the bridges.

Consider, as an example, a disc-like crack of radius R with Winkler layer under
uniform pressure p [9]. In the limit R→∞ the opening at the crack centre (dis-
placement discontinuity) and the Mode I stress intensity factor read:

Δu= u+ − u− �����!
R→∞

4 1− ν2
� �

p
�
kw, KI �����!

R→∞
p

ffiffiffiffiffiffi
2E

p
̸ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kw 1− ν2ð Þ

ph i

ð4Þ

where E and ν are the Young’s modulus and Poisson’s ratio of the material around
the crack (e.g., rock), u+ and u− are displacements of the opposite crack faces at the
centre. It is seen that both the crack opening (displacement discontinuity) and the
Mode I stress intensity factor are bounded even for infinite crack radius. This is the
effect of bridge constriction. Note, for conventional cracks both the opening and the
stress intensity factor tend to infinity with the radius increase (e.g. [10]).

The model of the crack with constricted opening is characterised by 2 dimen-
sional parameters. It is the Young’s modulus (more precisely the ratio E/(1 − ν2))
representing resistance of the elastic material and the stiffness of Winkler layer, kW.
As these parameters have different units, Pa and Pa/m it is possible to construct a
parameter of a unit of length, λ, which plays a role of the characteristic length of the
crack with constricted opening

λ=E ̸kw = b2L2 ̸ 2h3
� � ð5Þ

Therefore the constricting effect of bridges is important when R > λ, i.e. only for
large fractures. On the other hand when the fracture is small, R << λ the bridge
effect can be neglected (the fracture contains too few bridges).

Fig. 5 Crack with Winkler layer (shown by springs) opened by internal pressure σ (arrows)
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5 Conclusions

The well-known phenomenon of bridging in fractures has significance far beyond
the obstruction of fluid flow into the hydraulic fractures or forming the fracture
process zone. The bridges are capable of constricting the fracture opening and
subsequently bounding the value of Mode I stress intensity factor. This is only
important for large fractures, i.e. fractures whose size is of the order of the char-
acteristic scale of the bridge constriction λ or larger. This characteristic size is
determined by the average size, b, thickness, h, of bridges and the average distance,
L, between the centres of the bridges. The fractures that are much smaller than the
characteristic scale are not affected by the constriction; for them the traditional
crack models can be applied. The constricted opening and the stress intensity factor
can be estimated using the model of crack with Winkler layer. The constricted
fractures have the opening and the stress intensity factors bound as the fracture
dimensions proportionally increase, which distinguish them from the conventional
cracks where both the opening and the stress intensity factors tend to infinity as the
crack size increases. The proposed model is more accurate than the traditional ones
and can provide more adequate analysis of extended fractures in geomaterials and,
in particular, the design and monitoring of extensive hydraulic fractures.
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